o

=

e -

RS

24 RS

" Lj

HE F— 1 ik

USER™S NOTES

Copyright 1983, Ray Kingsley
SINWARE
Box B8¢32
Santa Fe, NM 87504

c : HOT Z-11 COMMANDS

READ mode commands are listed at the top of the keys in the
top of the two layouts below. Single-step commands are listed
on the same layout below the corresponding keys.

WRITE mode commands are listed on the lower layout. FUNCTION
key commands are not listed. Refer to your command list for
those.

fype «ddress £ set ceevsor. Comwmonnds ce SHIETED .

FINSRT.E SPON u FPFLG
ng2m™ 6a 8T
BACK BPTS
Sef ress. i
iC) F NT PR 3
o [5 P G (B 0B mm ol
WNDOW RUN TWlN F’RSC

CASEM FIXDF ZLNAD + =z ‘ po
u:i@uﬂmujﬂ i A
: e L«emovy
? < o
CEMEDEEEERE .
fles
ArE 1 Jefe WRITE mwiodes D - Back +H datfe weede Q—M i

] &30 b 653 i £ 0
ll!iu:] E'.s] ¥ (S 68 68
B IEIEREEEDE

(ASEMN 1STEPM DATA FIND. JNAMP 8K _ZAPP + = [l FUNCTION
iﬁ&auam
7 < > ”Ms
CEEEBEREN

A€ %lec. betfruee, MaJeg'

-f‘ramg-F&r Centso r 7‘0 G/\}ﬂ Yo besr

T
Yy Copy sereen (olis-assen Woc/c) or Yo END) (wrte ‘““éSJ
é A*(S:j»x o hawue (M—wsw‘ be Af.(eﬁ M—vt[(/>

&

q

2‘? a ha 2 3 e LN Coae LA f«M ®iCT &”
Cet END (vevy /-«/ﬂ/%d‘ Cosi oo * A7 2 ﬁ)

e enclosed cassette contains the following:

16k HOT Z 4ollowed by RBig REM followed by a NAME list.
These are named HOT Z, RBIGREM, and NAMES. The NAME
list requires more than 16kK. Load it from 2EBZ2 to
a0 or from BEBZ to AMGE, for example. Then enter
values at ALNA: 82-2E-B82-2E-FE-3F; hit shift-H.

&4k HOT Z followed by a NAME list for that version.

These are named HOT Z and NAMES. A printed annotation

for the NAME list will be available at nominal cost in

{he near future. LOAD the NAME list from EG@® to F184 :
or any comparable memory space; values to set at FEE®

would then be @@-E@-@t-E@-82~F1y then press shift H.

'LLSeé the notes on loading for loading and backing up the tape.

(w "\-‘I'Z‘: nomr S "-a—“?a,’v!aé.’ n‘keﬂkoha(. }’m howe,
Vomn fpv & fey adiibonl, tavne (Feuspovars |

‘* L’Vd-‘gr/ Wore WNoLs You shouitdf Y ceyt ,_.1,

IH1s 18 HO1 Z-T11

e cnclosed Lape holds versions ot HOT Z-11 for 16K and for
o4l mechines. However . HOT Z-—-11 allows vou to create your

oWy customized version from the original . The only difference
between the iwo copies on the tape is their memory occupations
thie Jlol: uset hes all of Lhe commands available to the 64K
usey . butl of cowr se much less workspace. I+ your projects
Will, HO'1 7 en & always cramped, then vou shouwld consi der
€ipanding vour meno y and installing one ot the modifications
Lthel «llows vou Lo run code above the IZE boundary. (Use the
1ok ver sion as Lhe sinplest starting point for the relocations
descr ibed in the later seclion on Relocating HOT Z.)

Those of vour with Jék can only run the 1ék version from the
Ltape., However ., vou cean test-loed the 64k side to be sure that
the cover comes up uandistorted, which indicates a good load.
(Faflenr vou hil e kev,e Lhe 64k version will crash in 16K.) With
&l con Len use el Lher version or creaste vour own version to
give vou access Lo memory currently occupied by HOT Z.

We will wssisl those of vouw who have loading problems by
@nchanaing vour tepe for an alternative dubbimna. However.,
plesze do nolt make thinos difficult for all of us by using the
oldesl ceasselle machine 1in the house and sticking with it.
The sy need conslant cleaning and occasional adivwstment of the
Frecesdd . v borrowing anclther recorder betore retuwrning the
Lep e Tt ds true thet dlrregularities in tape and cassette
CesCs G0 mabe some Lapes unloadable, and we ask for no

ol oaies when vor relurn & tape. We have exchanged tapes
widel v and throuwahout the world, and about all we can say of
Lhe medium is thal anvithinog can happen.

HOT Z2-11 combines & Jine-bv-line assembler, a labelling
disassenbler, & single-stepper and a simple editor. The
purpose of HOT 2 18 to gilve yvou a reasonable dearee of direct
conlrol of yvour computer. as well as to assist you in writing
asscenbl v-language proagrams to extend youwr control. p

HOLD 2 wil)l cohabal with a BASIC proaram,althouoh BASIC is a
fen cran Jenauege Lo HOT 2 and must be read as data whern HOT Z
1E dnh command. Standard versions of HOT 7 reside in high
memes v bl bed ow RAaM10oF, so it vow plan to work extensively

v b ey FIOT 7 and BrRS5IC vou shouwld use the command provided
By HICYT 2 Lo move REMTOF below HOT Z.

ool bebmiun r eaqul remnent For o ruanning HOT Z dis some knowledoe of
Fhe Bresiamdeocamad (hes) number system, which uses the characters
WS and fm-F oas dte 1é digils. These instructions were written
Wil A he assoaplion that vouw know the fundamentals of Z89

mec bt code, T4 vou do not. vou should acouire a 866

oGy e e bood. . The one by Zaks (from Svbesx) le usetul. but
Lhosce walten specificallv for the ZX are generally more =

s mpsd @, It vou are learning., thern use HOT Z as & blackboard
to wor b oul Lhe exercl ses.

¢

LOADING AND CASSETTE CARE

J{ ie possible to ruin a data cassette in the same way as a

floppy disk can be ruined. A low-gquality or poorly maintained

cusertie player can impose glitches on a tape and make it
Dirty cassette players will eat tape. Don’t take

unl padable. - : s
the chance. Make a back—up copy first and save this original

for the day wher the back-up fails.

LOAD your original tape with LOAD "". (LOAD "HOT Z" will work
too.) With the 16k version, when the cover comes up and asks
vou o "FPRESS ANY KEY TO REGIN", you can make a copy by
starting « fresh cassette on RECORD and pressing the S hkey.
Your computer will output & backup copy to tape if you have it
running. Any other kevy will start the program.

I more than 1é6k. vou should be aware of the following method
$or duplicatino any ZX tape that loads according to the ROM's
ASIC protocel. That protocol requires that the data seament
as opposed to the name header) beqin loading at address 4009
(VERS) and load as far as the address that comes up in 4@14-0
(ELIND) . With that knowledoe, you can LOAD any tape as data.

‘provided you LOAD to an offset from the intended area of the

ROM"e system variables (40689-4@70).

For duplicating HOT Z or any long program, you need an extra
16K, that is at lesast 32K of RAM. Then get HOT Z running and
learn how to use its commands. LOAD the original HOT Z tape
via the HOT 7 LOAD command with the cursor set at address 8009
and with END set to, say 898¢H just for practice, then stop
vour recorder with the PAUSE key if you have one, but stop it,
and rewind it immediatly so that you don’t forget and start it
in the middle, which is one way to ruin a tape.

Now your memory should read out an an offset set of system
variables, the ones that will be coming in from the tape, and
the address at 8%14-5 (lo-hi) will give you one more than the
last address to be loaded from the tape. Take that value, add

. the offset, and enter it as prescribed to set END (the TO key,

as in TO the END), then start recording the tape from its
beainninag again. This time you will load a full copy. as
data, of Lhe tape’s contents. I+ you just SAVE the same
memor y contents to another tape, then you have a backup tape
Lhel will LOAD in the normal manner from BASIC. You have also
becone o« copier, and if vou persist in that wantonly vou will
cansw Lhe extinction of programmers in your species of
computer , which miaht foreshadow the ultimate disaster of
model extinction.

k3

£

The more important thing you can do with this technigue is to
chanae the proaram you have loaded and to save the new

I+ vou learn how to manipulate the system variables,
vou can creale self-loading tapes of great variety. For
example. you can direct where the ROM looks for its first
BASIC line by setting the start address of that BASIC line
inte 4@29-a (NXLKN) . 14 vou are writing machine code for a USR
call and if vour routine sets NXLN before it does its RET to
EASIC. Lhen yvour reentry to EASIC will begin with the line
whose address is in NXLN. Self-starting tapes also begin

with the lime that NXLN points to.

Ver sy oni.

1§ NXLN points to VARS memory space, then the BASIC
interpreter asks no questions but jumps up among the VARS and
triec to read what is there as tokenized BASIC code. I+ vou
oblige it with & properly formatted BASIC line, then it does
whel vou ask (@.0.. RAND USR etc.) The important thing about
introducing & machine routine from the variables block is that
you can wWipt eway @ll your initialization code by a call to
CLEAR, which is 1494 in hex. HOT Z°s initializer Jjumps into
Lhe memory space in the printer buffer (4@3C) to do that
CLEAK, and then starts the program.

We are frequently asked how to get a copy of HOT Z onto a disk
or a fast-load format. The ZXLRB fast-load program has a data
mode, which is ideal for saving HOT Z. You can even hook up
Lhe USE cell theat enters the ZXLRB command mode as a HOT Z
command., 0 that there is no need to go back to BASBIC to use
il., However, ZXLRB returns in FAST and HOT Z requires SLOW,
so what you need is an intermediate routine like CALL ZXLR,
CALL SLOW, RET. (SL.OW ie @BF2K.) Then put the address of this
routine into & dead key slot in the command file and use the
corresponding key for the command.

With &« data SAVE, you should save the entire HOT Z program,
excluding the variables block, and then start HOT Z with its
USK call after reloading. With the &4K version, you would
have to save the HOT Z program and file blocks separately, so
you woutld be better off loading the tape to B@U9H, as
described above., and data saving that block, and then trick
vour svsten into reloading to 4909 when you want to use it.
We regret that we have not had the opportunity to experiment
wilh the varietvy of systems that are now available for the
IX77T8, bul if vour syvetenm lacks a data SAVE, then you should
stamp vour feet at the door of the producer of that system.

MEMORY MAFS

Erief memory maps of the versions on tape are as follows:

16K Version

4955 4770 4356 4455 GEFF D4R S17E SRe# JFZ@é TFBE BEaF
. 4o fmm———— + -4 e $mmmm e o ————— ¥ PR +

Systeg Dicplay Calculator Your Work drea WRMEs -HI Jump’ HI Files BRI Prooras Stack HI Variables
Varigbles File Stack Tabies

&4k Version

4989 467D 43% 44p4 SR 7F28 F3RE FodE F776 FEPF FEGP FFég
fmmm——e $ommmmmmm e B $ommmmmee -+ + —mmtememee L + + + e i

Systew Dicpiav Calculator vour Work érez HI Prooras Work Area NAWEs HI duee- Files GStack HI Vars
Varisbles Fiie Stack Tables

In 641, the last 296 bvtes above FFE# are unused.

RUNNING HOT Z-1I1

The following section provides an introductory tour of HOT Z.
The experienced and the adventurous among you may want to
plunge right in. « If so, arm yourcself with the short command
lists and the keyboard map and try your luck. Details of the
various commands are available in the later sections of these
notes.

I4 you use MOT Z-I1 teo best advantage, you will discover that

it gives you a personal command of the machine (the Z8@)

ileself, with a few exceptions that stem from your hardware.

I¥f those exceptions bother you then you might find it

advantageous to improve your hardware. The most interesting

hardware add—-ons that we know of are currently coming from
LJohn Oliger, 14115 Nassauw Lane, Indianapolis, IN 46229.

These include a display board that turns your ZX/TS into

a conventional 789 computer with use of a full 64K memory.

M\ boAE $ipc 3’;& Bfio- Coos

S
J]‘steé;‘m};-tm‘(.p;lgs_m *g:_ l.mmg g?wau&!ﬂelk

F
Yoo -fo9¢ 898 f3SF s e O oo - recr uot used

e b L
2000~ 1Fo0 rec dest

Yo wovk. aves Cf) ' NAMES "H\-Z“ wOuP

AN INTRODUCTORY TOUR

The cover occupies the initial display file and evaporates
wher you press & key. Then you should see the first screen
"mage' of disassembled ROM. Down the left side of the screen,
you will see the memory—-address column, to which everything in
HOT Z is keyed. These addresses are in hexadecimal and in the
formal accepted as input by the program. In other words, all
addresses are four hex digits and include leading zeroes but
no identifying symbols either before or after. The format is
always there for you to consult as you make entries w1) Y

The address system runs from @00@¢ to FFFF, although the 16K
menory goes only to 7FFF. In & standard 16K memory. you may
find various parts of memory reflected into unused address
areas., a5 for example a repeat of the ROM code at 200@, B0od,
and/or at AGEE. This is hardware-caused, the result of
incomplete address decoding. In &4k, you are liable to find
that unused addresses above BOOY are cluttered with initial
garbage., which HOT Z can clean up for you.

The second column of the disassembly display lists the
contents of each memory byte. again in hexadecimal, two digits
per byle., packed together with no spaces between. These
numbers occur strictly in the order they occur in memory,
which is not necessarily an easy order for reading. This
column is raw data, as it were, against which any
"interpretation” can be checked. ZIB# instructions can be from
one to four bytes in length. A HOT Z routine gets the length
of any instruction and parses the bytes into instruction-
length clusters, but it cannot decide whether those bytes hold
true Z8¢ code., as here, or simply numbers used as data. That
decision in the end is up to the reader. 0On this first page
of ROM, the first instruction is two bytes long. the second
three, etc.

The next column, the NAME column, will hold user-entered
labels for the corresponding address, along with a few labels
provided in & permanent file on your original tape. After

you have annotated & program with these labels, you can SAVE a
NAME file separately from HOT Z., to be loaded again with
whatever program the labels pertain to.

The fourth column presents those particles of electronic
poetry known as assembly mnemonics. Relative jumps (JR7s) are
lisled, as in the sixth line, with their destination address
(or NAME) rather than the single displacement byte with which
they are coded. System variables for the ROM are listed by

an abbreviated name, as in lines 4 and 0.

You are probably familiar with these first bytes of ROM
throuah various FEEKs or publications. The first three
instructions turn off the nonmaskable interrupt that makes
SLOW mode work,., load BC to count up to 16K of memory, and jump
to the initialization routine at @3CE. The fact that only 16K
is cleared by initialization is very useful if you have a
larger memory and & reset button.

The rest of Lhe screen is taken up by RST routines. RST 14
prints ihe character whose code is in A,RST @8 handles BASIC
error reports, RST 18 and 2¢ help with interpreting BASIC, and
RST 28 is the entry to floating-point operations, which are a
separate sub-language in the ZX. R8T 78 and 28 are always
followed by one or more (for ZB) bytes that serve as data
rather than as machine code. The meaning of such bytes is
lislted in the mnemonics column.

The current HOT Z display is referred to in these notes as
READ mode or disassembly. The commands in this mode are
mainly for moving the display around to give access to
different parts of memory. The page flip, for example, is the
ENTER keys hit it to continue the disassembly with the
instruction following the one at the bottom of the screen.

For distant moves. you can enter a four—digit hex address to
the ADDR cursor at the upper-left screen corner. For example,
try #30R to see the memory count and the initial loading of
RAMTOF.

During address entry, you can backspace to correct anm error by
using the DELETE key., which works about the same way as it
does in RABIC., The difference is that DELETE doesn’t blank
out the entry and that you can”t back out of the whole entry
rouline that way. To back out, use the ENTER (NEWLINE) key.
which works as an escape key in this situation. ENTER is not
needed afler the last hex address digit.

In READ mode, you can also get to a named routine by entering
ithe four letters of an assigned NAME. Try KEYR. You will see
that the NAMEs appear in both the NAME column (referring to
the current address) and in the mnemonics column (referring to
the target address of CALLs or jumps).

In general, yvou can use a NAME in the file as a proxy for its
addr ess in the READ, WRITE., or One-Step modes of operation.

Now try Lhe shift-=D command from READ mode. This is the
display switch, and successive strokes of the the same key
will Lake vou back and forih between the data and the
disassenbly displays. The data display is for examining those
partes of memory that are used as files of data rather than for
8% code. The first and second columns contain the single
address and its content in hex, values that are reflected in
decimal in columns fouwr and five. (Use it as & conversion

table.) The far—riaght column aives the CHR$ of the contents of
the eddress and will turn up any BASIC programming or message
files. Enter. for example, the address @W@E7E to see the
kovboard file. Flip throuah using ENTER to see how the
kevwor de are stored., with their final characters in inverse.
Switch back to disassembly while vou're still looking at the
kevboard file for & taste of what disassembled data (sometimes
called nonsense) looks like. It"s up to you to distinguish
sense from nonsense when reading & strange programi; the
displav switch is there to help you do it.

The NatE column in the data display functions differently from
Lthe coluwms with the same heading in the disassembly. The
NiME=s i Lhe data display are those that correspond to any two
success) ve bvles, takern in lo-hi order, in the second column.
(The disassembly displays NAMEs assigned to the addresses in
ihe 4+iret column.) Some NAMEs in the data display can crop up
by chences for example, Lwo NAMEs 1mmedieatel v together mean
thel ot Jeast one i spurious,

Use the T commend in READ mode to oo to the beginning of the
NAIE 43 1e. The NAME file agrows downward like a stack. which
it oie nol, as vou add new NAMEs to memory addresses. Turn on
1he dala display to see the structure of the NAME +ile. Each
NfME Lalbes six bytes: the first two hold the address to which
The NAME is assigned, hence the listing in the NAME column,
and Lhe next four heold the NAME itself, which shows in the
CHR% column. Other odd CHR$ symbols will appear at random for
somne of Lhe address bytes, signifyinag nothing.

The dela display is also useful for looking at or creating
display files.

you can enter decimal addresses to the ADDR cursor., but these
musl be prefixed by the shift-3 (THEN) command. which

will pul up & D after ADDR. Try it with 16384, which may be
familier. Check the conversion with the data display. If you
enter & decimal address of less than five digits., then you
have Lo press ENTER to tell HOT Z that vou've finished. If
vou enler & decimal higher than 64K, the program will subtract
41 and dive vou what’ s left.

Mow el into disassembly and go to 1CAA. which is where the
ROM beagins the BASIC function LN. Hit shift-W to turn on

the floatinag-point interpreter. You will see here and

on succeeding page flips some of the floating-point calculator
lenauane. which is described in another section ot these
noles, At 1CAF vou will see a rendition of a RBABIC error
yeport after RST @08, in this case for a negative aroument to
Lhiee T ocer 3 Ul you can switoch off the $-p interpreter by

Fea A i ahii+l-~W again., but youw will have a more accurate

rendi: taon of the ROM i+ vou leave it on.

The last display on the tour is the ZIB¢ register display or
Single-Slepper . It is one of the guirks of bilinguality that
ihis display must be entered from an area where the floating-
point interpreter is not switched on, so first enter an

addr wes above 4@@#, say. Then use the shift-5 command from
the disassemb]yv. ;

The register display occupies the top three gquarters of the
screen. The left column lists the various Z8# registers;
please refer Lo a good 78¢ reference book if you need an

expl anation of the register names. The double prime, or gquote
sign, is the only symbol available in the ZX character set to
denote the exchange reqlisters. The exchange flags are listed
s EXFLAGSE.

The second column listes the hex values of the registers’
contents., Values for the accumulator (A) are listed at the
left of the column to remind vou that A is the high half of
the AF register pair, along with H, D and B. The third column
eilher converts the second column value to signed-decimal
according to the two’s complement convention, or, if the
aecond colum holds an address that has been NAMEd, then that
NAME is listed in the third column. The fourth column, headed
by the open parentheses, gives the hex value of the byte
contained in the address formed by the register-pair values.
(E.q.. across from HL vou will find the byte (HL).) The right
column gives the CHR$ of the byte in the fourth column (for
the regisler pairs) or of the byte in A.

The box below the one containing the exchange registers holds
deltails on the one-step user’™s stack and the state of the
flags registers. The user’s stack is separate from the main
machine stack so Lhat the system can absorb a few stack errors
without crashing the program. The top four pairs of bytes on
the user’s stack are shown at the right, along with the NAMEs
for any addresses they might hold, so that you can check to
see whelher vour iest routines leave anything behind. The
mein flags are listed below the exchange flags for easier
visual association with the conditionals in the program steps
below. Standard conditional mnemonics are given for the four
Prooar ammers” bits,

The inverse-printed address at the left in line 18 serves both
at a cursor and to mark the address of the next step set up to
be executed by the single-stepper. You can enter any address
into thal cursor just as yvou would in READ mode, or you may
alsc use a NAME. The ENTER key still serves as an escape
during address or NAME entry, but it has another more
imporLtant function as well, which is to run the next single
slep.

If it's not already there, enter @8¢8 to the NEXT slot, and
then notice the contents of the A and D registers just before
and afler you press the ENTER. This is a fairly safe area and
you cen experiment with & few more steps. (The things you
must be careful about are loading into some system variables,
eilher ROM's or HOT Z's, and some flag sets. LD (DF_CC),HL is
usually program hari-kari, for example. The SFACE key allows
vou io skip the step at NEXT. The top line of Z8#
instruclions represents the previous step executed, and the
threc steps following the one in NEXT are those that will be
reached if there is no branching. A branched-to step appears
directly in the NEXT slot: & skipped step disappears from the

displeav.

For faster debuaging. yvou can set breakpoints (shift-4 and
ehifl -2 commands) «nd use the shift-6 command to step through
Lhe code as far as the first breakpoint encountered. Two
breakpoints are provided so that your can cover both sides of
a condilional branch. You musi take care to set breakpoint
addr csses thal the code will actually encounter, since
stopping depends on finding a breakpoint exactly. The EBREAK
key will stop the shift-6 command if used quickly enough. You
carn display the current breakpoints with the shift-2 command.

Learners might consider mastering the use of the Single-5tep
fit sl and then using it to see how the various instructions
and a few resident routines work. A 1ot of bugs can be

avoided by testing every routine you write with this device.

Hil shifl-0 (Guit) to get back to the main READ display. You
will arrive at a screen page that starts with the address that
was in Lhe NEXT slot of {he Single-Stepper. I vyou spot an
error coming up at the bottom of the Single-Step display, you
cen quil Lhe display. EDIT the error on the disassembly
display, and get back to where you were in the Single-Step by
using the shift-5 command from READ mode.

Writing and Editing Z8¢ Code

The READ mode is a essentially passive, allowing you to page
throuah the memory and examine its contents. The WRITE or
EDIT modes are there to let you make chanoges in the memory
content., provided that memory is RAM.

There are essentially three WRITE/EDIT modes. With the
disassembly display, vyou can press shift-A and a cursor will
appeat at the top line of the edge of the right column. This
ig the assembly mode. Once vou turn on the cursor. you chanoe
the enlire commancd system of HOT Z. The commands available to
vou with the cursor on are listed as the WRITE-mode commands
on the command lists. Hitting ENTER with the cursor in its
"home" column will quit the WRITE mode and return you to READ,
where you can readjust the screen to another part of memory.

In addition to the command set, the up and down cursor
controls allow you to move the cursor to a given line or to
scroll the display page one line up or down by moving the
cursor up from its top position or down from its lowest
position. Up scrolling is automatic when vou ENTER a line
ihat is third from the screen bottom.

You may also enter a new Z8B# instruction to replace the one
lieted on the cursor line. Just start typing and the existing
line will disappear. #As you type, the delete key and the left
and right cursor controls will function as you expect them to.
1 the cursor is over the top of a character, your next
keystroke will replace that character. If you want to insert
& characler, press the EDIT key (shift-1) and a space will be
crealed at the cursor position, with all characters to the
right of the cursor being shifted one space right. The
rightmost character in the line (usually a blank) is destroyed
by this insert command. You cannot jump to another line with
the up or down cursor command while you are in the middle of

editing « given line.

When you have entered the intended ZB# instruction, hit the
ENTER key to put the proper code into memory. If your entry
is in Lhe proper format, the cursor will return to the left
edoe of the column and move one line down, ready to edit the
next line. I the cursor stays put in the line you are

wor king on, then it indicates a format error in the mnemonic
entry.

HOT Z-11 follows the format of the mnemonics listed in the
Zilog 2180 technical manual. This format is essentially the
same as thalt listed with the character set in your computer’s
instruction manual, with the following exceptions: the RST's
are followed by a hex byte (@8,1#,18,2d,28,3@,38) rather than
decimal and the OUT (N),A and IN A, (N) use the parentheses
shown here. (N is always a two-digit hex byte.) As a general
rule. the open parenthesis is always preceded by ezther a
space OF a comma, and spaces are always important.

When HOT Z fails to accepts your entry. it locates the line
cursor at the first position that does not match its template
for a proper instruction. Sometimes, however, as with an
omitted space or an unassigned label, the cursor may appear
car lier than your particular format error. (For example, it
will flag the first letter of a label even if only the fourth
letter is "wrong'.)

I¥f vou get stuck and can’i get HOT Z to accept what you’ve
entered, you can abandon ship and restore the original
mnemonic by hilting the FUNCTION key. Your recourse then is
to look elsewhere in the disassembly for the format of the
instruction you have been trying to enter, or to look up the
hey code for that instruction and to enter that in the hex
column (See below.) to discover how HOT Z lists the mnemonic.

If you try to back out of a line with the cursor-left key, HOT
Z will act as if you have tried to ENTER the line. If you
write «ll the way to the end of the line an ENTER will also be
automatically appended. This occurs with some of the IY+N
instructions. which just 4it in the alloted space.

You can use & preassigned NAME in an instruction anywhere that
a 16-bit (four hex digits) number occurs. For example,

LD HL, (RMTF) is equivalent to LD HL, (40¢4). You must give a
NAME 1o a particular address (shift-6 command in WRITE) before
you attempt to use it in an instruction.

Relative jumps (JRs and DJINZ) are normally entered with the
destination address or NAME. However, for the JRs only (not
DINZ) &« second form is available for short forward jumps where
vyou haven’™t yet assiaoned a NAME but know how far forward you
want to jump. JR +5 will jump ahead over five bytes. The
plus sign is required and the displacement is in deciwmal

with & range +rom ¢ to 127. Rackward jumps are not catered
for in this way: it is easier to look back for the address you
want Lo get to.

Frovided vou do not want one of the last four conditional
expressions (M, F, FO, or FE). you can use relative jumps all
the time, and if the destination address is too far away HOT Z
will convert youw JRs to JFs (absolute jumps) rather than
report an error. The reverse is not true: it you enter a
very short absolute jump, HOT Z will take your word for it.
This conversion works well for entry of new code, but you must
beware when editing in the middle of an existing routine,
because if a two-byte JR is edited and becomes a three-byte
JF. then the first byte of the following instruction will be
overwritlten.

There is no ORG command because you are doing the ORBG yourself
with HOT Z. However, direct data entry is possible in the
assenbly-edii mode through use of the DE pseudo-op. DE may be
followed by a quoted string (DE "ARCDE") or by an even number
of hex digits (DE @90F @D3IA). Spaces are ignored in reading
the hex digits, except for the required space after the DE.
Each pair of hex digits is read as one byte, and a single
digilt left over will be ignored. You can write a string or
series of digits «l]1 the way to the end of the line.

When vou hit the end, HOT 7Z will add the quote if necessary

and enler the line. Upon entry. the editor enters one

character (for a string in quotes) or two hex digits per byte
starling with the cursor address for as many bytes as it takes,
ithen resets the screen layout so the next cursor address is at
Lhe Ltop of the screen. The reason for this is that the data you
have enter ed would be disassembled by HOT Z, producing a
nonsensiceal listinag. You can look back with the data display to
assure yourself that what you have entered is indeed there.

The DE is simply & means of entering data without leaving the
assembly-edit mode. You should still assign NAMEs to your
strings or variables and use them in referencing the data.
The inserl command is recommended when you enter data into an
existing code block.

If you want to use the RELOCATE command (described below),
then you should not mingle small blocks of code and data.
Keep them in large blocks and keep track of what is where.

In addition to string entry with DE, you may also enter quoted
non-inverse characters for direct eight-bit register loads or
for direct arithmetic/logic operations. LD A,"A" will
assenble as LD A,26 and CP "Z" as CFP 3F. Sixteen—-bit (double)
register loads are not treated in this way.

Hes Editl Modes

Hil the shift—E key with the disassembly display to get into
Lhe main hex edit mode. The "home" column for the cursor in
this case is between the address and hexcode columns at the
left of your screen. Cursor controls work- -as with the
assembl y-language editor.

Te change the hex content of memory, you may either move the
cursor over with the cursor-right key or retype the line,
using Lhe keyvs from @ to F. With the disassembly display,
each line holds the correct number of bytes for a single Z8¢
instruclion. If you write a one-byte instruction, the cursor
will jump to the next line immediately; for multi-byte
instructions, Lhe cursor waits on the line until the required
number of bytes have been entered, then Jjumps automatically.
The purpose of Lhis feature is to allow you to copy hex
listings from printouts or magazines. You can just type away
withoul worrying about hitting ENTER at every line, and the
screen will scroll along with your entries.

With the edit mode, whal you see in the hex column is what you
gel when you make an entry, byte for byte. Edit does not use
NAMEs and you have to calculate the displacements for any
relative jumps you enter.

Al11 of the WRITE-mode commands are available with the hex-edit
cursor on screen. There is, however, no character insert
while yvou are editing a line., and the escape key in the middle
of a line is ENTER rather than FUNCTION. I+ you need to
channe the first byte of a line after you have started editing
it., yvou should escape by hitting ENTER and start over.

You can hit the shift-D (display switch) key either before or
after you have gone to ilhe hex-edit mode in order to obtain
the data-edit mode. This mode lets you change one byte at a
Ltime by wriling a new value over the top. This is the mode
that vou would use for entering hex data files, addresses and
the like. (Use the DE command from the assembly mode for
entering text files.) All write commands are available from
thie mode as well, excepl Lthe NAME (shift-G6G) command functions
differently than it does with the disassembly display.
SHifli-0G will no longer assign & new NAME, but can be used to
write a preassigned NAME to the NAME column, and the address
Loy which that NAME belongs will then appear at the cursor
addr ese and the byte following. The intended use is for
crealing address files (jump tables).

Inseriing and Deleting Lines (All WRITE/Edit Modes)

What happens when vou press ENTER after writing an instruction
is thet HOT Z reads the address of the line you are working
on, looks up the Lhe numeric code of the instruction. and
enters Lhal code into as many bytes as it takes. Then control
Qoues back Lo the disassembler, which reads back your code into
280 mhemonics and revises the screen page accordingly. An
important consequence of this is that when you are editing an
existing block of code vou must be caretful not to overwrite
more: limes Lhan vouw inlend to (by entering a four-byte
inslruction over a two-byte instruction, say) and to watch out
for new insltructions that crop up when you overwrite a long
immslbruction with a short one (one-byte over a three-byte
instruction. for example).

14 you don*l know Lhe byle length of Z8¢ instructions. the way
around the above problem is to use the line-insert (shift-1

or EDIT) and line-delete (shift—-H) commands whenever you are
editing an existing block of code.

When vou insert or delete a line, a block of code is moved
either to make room or to close up the emplty space. One end
of Lthal block of code is determined by the cursor: the other
end must be determined by vou before you start your editing
swesicon. Whenever the WRITE cursor is on, a variable called
END is displaved in Lhe upper right corner of your screen.
END markse the other end of the active memory block for an
insertion or a deletion or indeed for any block operation,
such as « clear, a fill, a SAVE, or a transfer. END is set
witlh Lhe 70 key (as in TO the END) followed by four hex digits
ar e WNAHE. On some types of entry errors, you may be asked
lwice for the proper value.

)

You should sel END whenever you begin an editing session. END
ehould be within your workspace and not overlap with the HOT =2
proaram. Jest you move sections of HOT Z around and lose
control of your computer. For the insert-line and delete-line
commands. & special restriction has been. added to the value of
END. For those operations, END must be within 256 bytes of
the cursor address, or else you will be asked (automatically)
Lo enler & new value of END when you give the insert or delete
command. At that poinlt, HOT Z will accept any value you enter
for END and perform the operation. The purpose of this

behavior is 1o calch those times when you have forgotten to

sai. END, and Lo save you from & possible crash.

For inserliions and deletions, END can be either above or below
the cursor address. The "usual" value would be for END to
point to an address higher than the cursor address, in which
case «1 insertion would push all values to higher addresses to
make room for the new instruction. For example, if you insert
& lwo-byle instruction at 4C1@ with END set to 4C8¢, then all
instructions from 4C19 will be moved two bytes higher until
4C7E. which will go into 4CB#, and the original contents of
4C7F and 4080 will be destroved. A deletion of a two-byte
inslruction would move all instructions to lower addresses,
and Lhe conbents of 4C7F and 4CBYW would be duplicated in 4C7D
and 4C7E.

On the olher hand, if Lhe address in END is lower than the

cur sor address, then an insertion will leave the following
addresses undisturbed but will push the contents of preceding
addr psses 1o lower addresses as far as END. For example, with
END sel Lo 4C#@ and the cursor at 4Cl#, insertion of a
Lhree~bvte instruction would destroy the contents of 4COd,
4001 and 4087 by overwriling them with the contents of 4C#3,
4004 and 4095, respectively. Analogously, a deletion would
duplicele Lthe first three (or N) bytes in the next three. The’
ingertion itself will in this case go into the address
preceding the cursor address. This feature is useful when

you are editing in a constricted memory block with blanks that
may be eilher above or below.

ffler insertions or deletions. the cursor position may have to
be adiusled for your nexl enlry. (The preceding discussion
uses "«bove' and "below" to refer to numerical values of
addresses, not Lo screen peosition, where addresses get higher
@ you go down the screen.)

When « NAME is assiagned within & block where vou are inserting
or Jeleting lines, the NAME will move with the instruction to
which il is assigned. The displacement assigned to relative
Jumps is not adiusted, so JR TARG may read JR 4C22 after an
inser tion theat pushes TARG from 4C22 to 4C23. Ee sure and
labiel all JK destinations and then check that the labels are
still correct afler an ediling session. I+ yvou use labels all
Lhe time, then an error will stand out clearly.

¢

Whe vou are editinag the datea displav., all insertions and
deletions atfect one byte at a time.

Usino WRITE Commands

Many of the WRITE commands affect a block of memory and
remure that the END variable be set first to a proper value.
Use the T0 kevy to set it. Aside from its use for insertions
and deletions of lines, END i1s generally set to denote the end
of « block of code. whereas the cursor marks the beginninag.

I+ END is less than the cursor address, the block is generally
taken Lo be null. thouwah sometimes the operation will still
aftecl Lhe very first byte. Most operations include the END
addr ess; the excepltions are SAVE and LOAD, which finish one
byle betore. (This makes 1t effectively impossiblée to LOAD or
8AVE address FFFFH, since the next address is @00¢@, which is
lesse Lhan any cursor address.)

The block commends are LOAD, SAVE, FIND, transfer, clear,
till., print., readdress and releocate., in addition to the line
ingert and delete described above. The simpler commands are
shifl-m and shift-E., which togale the cursor across the screen
betwee assembl y-edit and hex-edit; shift-D, which toggles the
displ ey belween disassenbly and data and works only in
hex—edi L because you can’t assemble data; shift-6 and THEN,
which allow you to assiagn or delete a NAME at the cursor

addr ess: shifli~-8, which takes you to the single stepper:
shifl-R, which transfers control to the program beginning at
the cursor (Novices beware!): and FUNCTION followed by the
D=keyv.e which moves RAMTOF and the stack to the cursor address
ancd Lhose Lelow.

The Lwo cassette commands (LOAD and SAVE) allow you to move
the contents of individual blocks of memory back and forth to
and from tape. Buch tapes will only be loadable by the
corresponding BASIC command if the bytes of memory are in the
tormal of a BASIC program, as explained in the earlier section
O Copying tapes. However, you can save your machine-code
RO ein dr afbe and your NAME files with HOT Z., and then load
Lhew atwin to continue working on or testing them. The LOAD
andd 5AVE addresses do not have to correspond, but you must
heve Lhe same block length from cursor to END if you want to
preser ve Lthe whole tape. (This is why you can load BASIC
Lapes «t an offset.) If you LOAD & tape that is too long for
the assianed block. the extra part is cut offs if vou attempt
Lo LURD & tape that is too short for the assigned block, you
will ael the familiar "searching" pattern on screen when the
Tive part of {he tape ends: hil BREAK to restore HOT Z and the
porlLion of memory loaded. If vou BREAE during the active

por Lion of « SAVE, HOT Z will restart itsel+t, losing the value
asslqned Lo END and initializing the stack, the NAME file, and
any values held in the register display. (Your NAME file can
be recovered., See the section on NAMing.)

LOAD a«nd SAVE both take tape names, which are entered without
quotes after you give the command and before you press ENTER.
Meotimum lenath for such tape names is the length of the
command line (Lop) on which they appear. If you exceed that
Jength., HOT Z reads an ENTER and begins to execute the
commarnic.

The TROANSFER command allows you to move the contents of one
block of memory Lo another bleock. The first thing to do is to
make sure that your destination block will hold the source
block wilhout overwriting something you want to keep (or HOT
Z). You have the option of copying just the code (shift-T) or
of copying the code and moving the NAMEs assigned to it as
well (FUNCTION=-6). The original of the code will not be
erased by Lhis command. You can copy from ROM but of course
potainto it. 5

To use the transfer command. set END and hit the appropriate
command keys. This will bring up a DEST cursor at the upper
lefl, which asks you for the destination address of the block.
HOT Z will wait for you to hit ENTER after that address, and
if vou change vour mind or find you’ve entered it incorrectly
you Can bail out by hitting the SFACE key instead of ENTER.
After the command has executed, the display will move to the
address youw gave to DEST.

The FIND command has a similar protocol Lo that of transtfer.
In this case. set the cursor to the beginning of a block of
memory for which you want Lo find a match. Set END to the
lasl byte of vour template. Hit shift-F. An address cursor
lJabel led LOOK will come up at the upper left. Enter the

addr ess at which the search should begini hit ENTER to proceed
or SFACE to back out. HOT Z will search 16K (4@80H) bytes for
a match to the memory from cursor to END; if a match is found,
Lhe display moves Lo it: if there is no match, the display
remains at your template in READ mode. If you find one match
and wani Lo search for anolher, selt the cursor again (shift-A
or shift-E)., move the cursor down & line or two so it doesn’t
peint Lo ithe beginning of the found match, and use the
FUNCTION=-F command. I¥f a second match is found. the display
will move Lo ity if nol, the display stays put. (NOTE: If you
are searching for a block of 8 zeroes, say., and you find a
block of 12, then 1o continue the search you should move the
cursor down so that there are 7 zeroes or less below it, or
else vou will find the same string all over again.

The CLEAR command (FUNCTION-@) will put reroes in all bytes
from cursor o END. The FILL command will first ask you for a
kevelroke and then fill the block wiin the code for the
chearacter assioned to that key. If you clear or fill a block
af HOT Z or the stack, you are likely to crash.

The PRINT-SCREEN command in WRITE will send the contents of
the screen, starting with the cursor line, to your 204
printer or to the Memotech parallel interface. Frinting will
continue, interruplted by page flips of the display, until the
bottom of the screen that contains the END address. If vou
forget Lo set END., you can EBREAN to save paper.

There i alsto a hex—arithmetic command, which, though not a
block command, uses both the cursor address and END. The
cummand ies shift—-0C, and the result is the hex sum and
difference (END minus cursor address) of the two values, which
ate displayed in the command (top) line.

The Readdress (for jump Ltables) and Relocate (for programs)
commands are described in a later section of these notes, due
Lo Lhedir complexily.

A delailed descriplion of all the HOT Z commands is also
included as a later section intended for occasional reference.
For normal use., you may want to detach the brief command lists
and the kevboard map included at the beginning of these notes.
Other secltions will pgive you details on naming and NAME files.
the floaling-point lanausge interpreter, and the program
relocator . If there are specific commands which you find
absolutel v opaque or unusable, please write to us for details.

HOT Z7« Flaags

HOT 7 uses the byte at 4921 in the ROM's system variable speace
as 8 bhil-flags. so you could crash the system if you try to
load thal byte. The significance of the bits is as follows:

Set for disassembly of RST @8h

Sel for disassembly of RST 28h

Sel for an INSERT in progress

Set by an input NAME, reset by an ADDR
Set for data display

Set for EDIT, reset for WRITE

Set for a scroll

Set for window in register display

U DUR =D

HOT Z «lso uses 497B and 407C to hold a restart address in
case you fall into a BASIC error trap (RST #8). Occasional
use is mede of the system variables FFPC, OLDPFC and STRLEN,
but this use does not. to our knowledge, atfect the operation
of « co-resident BASIC proaram.

- 17 -

DISASSEMELER FEATURES

The HOT Z disassembler has been specially programmed for the
ZX 8K ROM. The special features that are catered for are the
system variables, the BASIC error reports, and the floating-
point operations, which make up the ‘calculator language’ of

the ZIX.

Abbreviations of system variable names are included in the
permanent NAME file that loads with the program. The HOT Z
disassembler always uses the name for a system variable
whether it is referred to by absolute address (e.g. 4@0C) or
by a displacement from IY (IY+#C). However, if you want the
1Y form from the assembler, you must write it out, since the
assembler will always substitute an address (two bytes) for an
entered NAME. We have added DENC (debounce) for 4027 (decimal
16423 and HIFG for 4321 (16417), which is used as a flag byte
by HOT Z. Since these system variable names are part of a
NAME file, you can change the abbreviations to suit your own
taste by entering & new NAME over the top of the old one
(shifi-~G command in WRITE)..

HOT Z~-I11 alsou uses the system variables PFC., OLDFFC and
STRLEN., but this should have no serious on a RASIC program in
memory with HOT Z. CALLs you make to ROM routines should not
fail for incorrect system pointers. I+ you use the floating-
point routines, you should load HL® with 10D2 before making
the CALL.

When an RST #8BH is executed, the byte following the RST is not
code but is used as data to generate the BASIC error report.
HOT Z reads these bytes as ERROR 9, etc., rather than
generating Z8% mnemonics for them. If you are running the
disassembler over & block of data, you may see some queer
resuwlts, like ERROR Z.

A RBT 28 is the ZX ROM's entry into the floating—-point
language, which is normally disassembled by HOT Z. If you
find this second language distracting, you can switch off the
f-p language interpreter with the shift—-W command (READ).

If you want to know whal is really going on in the floating-
point routines, then consult appendix A of these notes.

THE COMMAND SET

All commands are on shifted keys in order to allow all of the

«lphabet for assembly editing. Following is a description of

each command. Remember to use the shift key with all commands
except ENTER and SFACE.

READ Mode
Key Description
e Sets the cursor to the top line and switches to the

AND

assembly-edit mode. The same keystrokes will get you
from hex—edit to assembly edit. This command works
only when the disassembly display is on.

(Shift 2) Switches on or off a display of the stack-
pointer address in the upper right screen corner. The
default is 0Fff. because it isn’t pretty, but you
shoulcd turn it on when you are test running your own
routines. There is a small amount of shock absorption
in the HOT 7 stack., but if you should see it changing.
vou should reset it with the R command (Read) and then
look verv carefully at what you are doing to the stack
with the routine you are testing.

The display switch from disassembly to data display or
back a&gain. The same command works with the hex-—edit
cursor on but not from assembly-edit.

Sets Lhe cursor to the top line and switches to the
hex-edit mode. This command also works from assembly-
edit mode without resetting the cursor line.

Fix display file. Combs the display file and sets all
the line endings. Use it when one of your experiments
messes up the display. If you are in READ mode. this
command should work even without an ADDR cursor.

NAME file switch. 1 you are using only one file, the
NAMEs are switched off or on. If you have two files
in memory. the command will switch from one file to
the other. The point of the double NAME file is for
revising a proaram under development, so that you can
use the same NAMEs at two different addresses.

Guit HOT Z for EBASIC. HOT Z remains resident and can
be recalled with RAND USR 22528. If you want to
protect HOT Z. move RAMTOF first with FUNCTION-Z (Write).

THEN

TO

¥,
35 7 I SR Aot
:\"\ “;‘:j’,’.g A S

Restarts HOT Z. Reinitializes variables and resets the
stack. Furpose is to clear clutter from the stack.

Switch to single-stepper. The address in the NEXT and
LAST slots will be last ones used there. Use this
command Lo get back after youw have spotted and
repaired an error in the upcoming code. All old
single-step register values are preserved.

Move the display to the start of the NAME file and
switch to the data display. Use this command as
preparation for SAVing a NAME file. (Turn on the
cursor, set END, and SAVE.)

(Shift=2) Indicates decimal address to follow. The
command will add another inverse block to the ADDR
cursor. If the decimal address is less than five
digits long. hit ENTER after the last.

(Shift—-4) Floating—-point disassembler switch. This
is a flag switch (NOT an on—-off switch) which

switches interpretation of a byte from Z8¢ language

to floating-point language. This command is necessary
for certain embedded sections of floating-point code
that are not preceded by an R8T 28 but are jumped to
from some other portion of floating-point code. This
command will not function if the W switch has been set
o g a f i I+ it doesn’t work, hit shift-W and try
again.

Switch the on-off state of the floating-point dis-
assenbler. I+ turned off, then the TO (Shift-4)
command will have no effect. I+ on, then every EF
(RST 28) will switch to the floating-point disassem-
bly and every 34H will switch off the floating-point
disassembly. If vou have a stray EF on screen while
you are in an edit mode, you may get a messed up
display when you enter code. If so, exit (ENTER) +from
edit mode, use this shift-W command, and go back into
the active mode without fear. Default state is ON.

Frints the screen. Useful for small routines. Gives

you headings and all. Consider using the same command
from an edit mode for no headings and variable length.

- 20 - :

¢

WRITE Mode Commands

I

AND

EDIY

ENTER

swilech to assembly-edit mode. Works only when dis-
assembly display and edit mode are on. Moves the
cursor horizontally.

LOAD $rom cursor to END. Works exactly like the HOT
-1 command. If vyou enter a tape name (no quotes),
then the tape is searched for a header with that name.
I+ no name is entered, then the first band on the tape
ie loaded. The first byte after the tape name is
loaded Lo the cursor address and the rest follows.
Loadinag stops at the byte before END. if the tape
does not contain sufficient deta to fill memory to
END, then the familiar "waiting" pattern comes up on
SCY EEMN . You may BREAE from this command. BRASIC tapes
beagin at 49099H and will load from HOT Z i+ there is
SPACE 1N Memory.

Dieplay swilch, data/disassembly. Works only from
hes—edit mode.

Switech to hex—edit mode from assembly edit. Moves the
cursor horizontally.

Sets the Insert mode for the next instruction (only)
to be entered. I¥ END is less than the cursor
address, then instructions are pushed to lower
addresses (up the screen) as far as ENDy if END is

ar #eter than the cursor address, then instructions are
moved to higher addresses (down the screen) as far as
END. Any NAMEs assigned to shifted memory area will
also be shifted so that they stay with the instruction
to which they were assigned. Relative jumps to or
from Lhe shifted area are not corrected and may
require a fix-up. If END is 256 bytes or more from
the cursor address. youw will be required to confirm
the END value before the operation proceeds.

Guit to READ mode when cursor is in "home" column.
During hex entry, ENTER escapes and leaves the
eriginal memory contents intact. During mnemonics
entry., ENTER sends the line contents to the assembler
for entry into memory.

Find the string marked by the cursor (first byte) and
END (last bvte)., Sets the display to start with the
found string. If no match is found, then the display
remains al the template string. To find the next
match without going back to the template., use
FUNCTION=F. Do mot use other commands between

the F ocommand and FUNCTION-F.

FUNCTION During mnemonics entry, escapes and leaves the

G

original memory contents intact. When cursor is in
the "home" column., FUNCTION changes the cursor to
inveree F and acts as a prefix to the FUNCTION
commands listed below. 7

NAME command. This command has two separate effects,
depending upon whether it is used with the disassembly
display or ihe data display. With the disassembly
display. the effect is to christen that instruction
with the NAME that you enter to the screen following
the command. As with HOT Z-1, a NAME is four letters
with at least one bevond F in the alphabet.

With the data display. the NAME you enter following
the command must already be assigned to some address.
HMOT Z then loocks up the address for that NAME and
pokes theal address to the bvte at the cursor address
aned the byte following. then moves the cursor down two
byltes. Use this form for entering tables of

addr esses.

Deletes Lhe instruction at the cursor and closes up
Lhe code between the cursor and END. END may be

@i ther lower or hioher than the cursor address. i
END is less than the cursor address, then code is
moved from lower addresses to close the spaces; if END
ie greater than the cursor address, then code is move
from hiagher addresses to close the space. Code at the
END address and beyond (moving away from the cursor)
i preserved. I+ END is 28546 or more bytes away from
the cursor, then you will be asked each time to verify
Lhe END vealue betore the command is executed. The
purpose of this is to prevent your messing up the
entire memory by forgetting to set END properly.

Doues hex arithmetic. Takes the cursor address (K) and
END (E) and displays on the top line the sum (E+K) and
difference (E~K) in hexadecimal. $

Funs code beginning at the cursor address. Returns to
HOT 7 with the first RET. I you do an extra FOF and
destroy ihe return address, then you are on your own.
(This command differs from the similar one in HOT Z-1,
which reqguires a JF back to HOT Z.) Recommended pro-
cedure is to test vour routines first with the single-
stepper before attempting the R command.

Sinnle-steps the instruction at the cursor address and
swil teches Lo the single~step display with the result of
of thal instruction in the register values and the
following instruction in the NEXT slot.

THERN

10

Ll

Tr ansfers code belween the cursor address and END
(inclusive) to a destination (DEST) that you enter
fallowing the commeand. ENTER after DEST executes the
commands: SFACE aftter DEST cancels the command: TO
{ahift 4) after DEST lets you resel END before the
compand is executed. Does not transfer NAMEs, To do
Lhel« wse the FUNCTION-& command. which is otherwise
identical to this one.

(8hift @) Deleltes the NAME at the cursor address from
ihe current NAME file. This command will only atfect
Lhe NAME that vou see on screen with the disassembly
displav, 80 it is best not to use it with the data
display.

Frinas un the END? cursor that allows vou to reset the
END variable. Whenever & block of code needs to be
marked, il 18 generally delineated by the cursor

addr ess and Lhe addrese assiagned to END. Always use
il te bleock ouwt a seaoment of memory for Insert and

Dl ete commands before beginning to edit., END should
be set within 2546 bvtes of the cursor for editing. but
Lthat restriction can be overridden in any particular

C e S . Seecinsart candgDelgtesinstructions,)

SAVEs code from cursor to END-1. Enter a tape name
without guotes. This is & data SAVE. I+ you want to
reload such tapes from BASIC. they must begin with a
proper set of system variables. (Firset byte loads to
4a@9H in BASIC.) I+ you load in a RBASIC tape anywhere
in menory and change it judiciously., then SAVE the
same block with Lhis command. you should be able to
reload the result from BASIC.

Dutputs the screen without headings from the cursor
address to END to your ZX printer or Memotech I/F.
Will print lightly beyond END to fill out the screen
on which END occurs. A variant of the COFY command.

FUNCTION Commands: Hit FUNCTION first. then the second charac-

Ler

ligled below. (F stands f+or FUNCTION.)

Clears memoryv from cursor address to END. Take care
not to erase HOT Z or your own programs.

Fille memory from cursor address to END with the code
tor a key thal vouw specify in response to the KEY?
prompt.

Moves RAMTOF to the cursor address and moves the
machine stack to the addresses Jjust below. HEe sure
there is enouah clear memory in the new location
before moving the stack. (Turn on the SF display from
READ (AND key) and look at RAMTOF (4@#4-5): subtract
for the stack size and allow an extra 44 bytes for
stack excursions.)

Dead key.

Transfer memory contents and assigned NAMEs from a
memory block (cursor address to END, inclusive) to an
area beginning with an address entered in response to
the DEST prompt. (See shift T command.)

Readdress a jump table (address file) between the
cursor address and END by a 16-bit displacement value
entered in response to the DISF prompt. Takes the
address (lo-hi order) at each pair of memory locations,
adds the displacement, and re-enters the sum to the
same locations.

Felocates Z83 code between the cursor address and END.
Readdr esses all CALLs or JFs. Allows a three-way par-
Lition of code. variables and (constant) files.
Reauir es nine addresses to be first entered at TEMI
threowah TEM9. See the special instruction sheet on
this command.

Initializes display window for single stepper. GSet
the cursor to a block of 768 bytes of clear memory and
give this command. Then go to Single-Step mode and
uwse the shift-W switch to see the result of those
steps that put a character on the screen.

Continues the search for the string specified in the F
command. Starts searching from the current cursor
position. (1, for example, you are searching for a
block of six empty spaces and you find a block of
nine, then you should move the cursor down four spaces
ar more, so you don’t refind the last eight spaces,
then the last seven, etc., of the same block.) Uses
temporary variables that could be overwritten if you
stop in between for other operations.

SINGLE-STEF MODE

Koty

‘ FAND

EDIT

ENTER

o

Function

Displey breakpoints. Lists the current setting of the
Llwo breakpoints on the lime below the flags display.

Kacks up. On its +irst use, this command takes the
instruction from the LAST slot at the top of the
disassembly listing and puts it in the NEXT slot
(second line). Repeated use with no intervening
commands will back up one more byte for each keypress.
Intended use is just to get the last step back.

Runs the instruction in the NEXT slot and reports the
resulting register values.

Go (run) to breakpoint. Causes the test routine to runm
from the addrese in the NEXT slot to either of the two
breakpoints, which must be set in advance of this
command . Breakpoints must be set to an address that
starte a command and not to & byte embedded in a
command. The B0 routine checks the RREAK key after
execuling each line of code, S0 you can recover from
endl esse loops and sometimes from runawey routines (if
vou're quick) by hitting BREAK. If you are using the
window, il should be switched off for this command.

Guit single-step and return to READ. Return address
iz Lhe address in the NEXT slot of the single stepper.
Register values will be preserved if you reenter from
READ mode .

Run & CALL or RBT 14, It is your responsibility to
know that the called routine will not crash and not to
send RST 19 any unprintable characters. The purpose
of this command is to shorten the time needed to step
through complex routines.

Sel register value. The response to this command will
be: REG? in the NEXT cursor. You should respond as
tollows for the various registers:

for the A register

for the BC pair

+or the DE pair

for the Flags register

for the HL pair

for the user®s Stack Fointer
tor the IX pointer

for the 1Y pointer

<>xXx@HpITMomd

(8)
SFACE
2
THEN
1O
W

Note thal all settings are 16 bits (two bytes) except
for the one hex byte for A and the mnemonic setting
for F. The specific flag bits are set or reset

with the same mnemonics as are reported (M, F, Z, NZ,
FO, FE. C. NC). Use this command to set up initial
conditions for testing your routines.

Shkip the step in the NEXT slot and advance to the next
instruction. Skipped instructions are not listed in
Lthe LAST slot at the top of the disassembly segment.
Twin the breakpoints. Sets Breakpoint2 = Breakpointl.
Sel Breakpoinll. Breakpoints are set just as register
pairs are, with a NAME or address entry into the NEXT
cursor. You must set the breakpoints precisely to the
beginning of the instruction at which you want the
csinale-step to stop. because the stop depends on the
address of the next step being exactly equal to the
breakpoint. 14 the breakpoint points to the second
byte of a two-or-three-byte instruction, you routine
will never stop until you crash or hit BREAK.

Set Breakpointl. FBreakpoints are set just as register
pairs are, with a NAME or address entry into the NEXT
Cur sor . You must set the breakpoints precisely to the
beginning of Lhe instruction at which you want the
single-step to step, because the stop depends on the
address of the next step being exactly equal to the
breakpoint. 1+ the breakpoint points to the second
byte of a two—or—-three-byte instruction, you routine
will never stop until you crash or hit BREAK.

Window switch. Switches the optional full-screen
display after each step. The first time you hit
shift-W switches the display in, the second time
switches it out, etc. Before you use this command,
you must first have used the FUNCTION-9 command in
write mode to set up an alternate display file.

Frint screen. Copies current screen to printer.

ON NAMES AND NAMING

HOT 7 labelling or NAMing system is intended to make the
proarams you are reading or writing more comprehensible when
they are listed. The four-letter limit is imposed by the
IP=column ZX display. A space 1s not a legel character in a
HOT Z NAME., so use a dash or other punctuation if you want
fewer than fouwr letters.

The NAMEs themselves and the addresses they assigned to are
contained in « special file, referred to as the NAME file. A
NAME file is an ordered list beginning with the highest
address Lo which a NAME is assigned (two bytes)., then the +four
letters of that NAME., then the next highest address, etc.
After Lthe last NAME in & file. there must be two zero bytes.
HOT Z ftakes care of ordering the NAMEs for you.

A small NAME file is loaded every time HOT Z is loaded., and
that file contains four-letter abbreviations of the system
variables as well as HOT Z°s variables. You will find a few
extiras in the crowd from 4000 to 4¢7D. LINK, TADD, and ASIM
are used by Lhe single stepper. TEMI throuah TEMY are slots
for temporary lé-bit variables for various HOT Z routines.
(You may use them for any of vour own routines for values that
are nol reguired once the routine is over, provided your
routine does nol call the f+loating-point calculator.) HZIET
(47E-C) holds HOT Z's restart address for those cases when
vou (or HOT Z) are using ROM routines and stumble into one of
the BASIC error traps.

The permanent NAME file that loads with HOT Z can be expanded
to hold any NAMEs you add in a session of using HOT Z, or you
have the option of starting a new file from scratch. In the
standard 1é6 and 64K versions. the permanent NAME file is
located just above a large work area, and as you add NAMEs the
file expands downwards in memory (to lower addresses).

Add a NAME to the file with the shift-6G command in WRITE mode
with a disassembly (not data) on screen. The command will
Qive youw a cursor in the NAME column and allow you to enter

or replace the NAME for that address. A legal NAME is made up
of any four sinagle non—inverse characters with the restriction
thal al least one character must be beyond F in the alphabet.
I vou forcet that rule, HOT Z will refuse to accept your new
NAME and will ask you for another. A space in a NAME will be
accepted and the disassembler will list the NAME, but you will
not be able to use such NAMEs when working with the assembler,
which parses according to spaces and punctuation. Take care
that your NAMEs are unique, or HOT Z will always find only the
one at Lhe higher address when you refer to it. (I¥+ you enter
« NAME to the ADDR cursor before you assign it, then the NAME
file will be searched and the display will move to that NAME
if il is already there; otherwise the display stays put.)

- 27 -

The THEN key (WRITE) will delete a NAME at the cursor address
from the screen and from the NAME file.

The shift-T command (READ) is there to let you find the start
of your current NAME file. You may want to check up on it if
vour are working under crowded memory conditions to be sure
the file doesn’t overwrite some valuable code. This command
switches the display to data and moves to the lowest address
of ihe NAME file. Since the NAME column in the data display
lists NAMEs assigned to addresses formed by pairs of bytes in
the hex column, the NAME appears horizontally across from the
firesl address byte and then vertically opposite the last four
data bytes. (Be aware that chance occurrences of data can
loock like addresses and cause spurious listings in the NAME
column of the dela display.)

You should also use the shift-T command when it comes time to
SAVE the NAMEs youw have entered in a session. However, you
will also need to know the end address of your file in order
to SAVE it. You can call up that end address by entering NEND
{o the ADDR cursor: the end address of the NAME file is listed
lo~-hi there. You can either add 2 to that address to include
lhe Ltwo zero bytes thal act as a terminator, or you can
rementier to rero those two bytes after you releoad the tape.

1+ vou choose the first option, hit shift-T, turn on the

edit cursor. set END to NEND+2Z, and SAVE. Record the
addresses for use when vou reload.

When vou reload a NAME file. you must install the start and
end addresses so that HOT Z will know where to look for that
file. This is done at the six-byte block labelled ALNA
(alternate NAMEs) in the permanent NAME file. With the data
display and the edii mode, write the start address twice
{lo-hi) followed by the NEND address; don’t forget to subtract
2 it vou have included the terminating zeroes. (If you have
not included them, make sure they are there 7first.) If

vou don’t do these settings correctly, you will hang up the
program when you try to switch the new file on.

The NAME-file switch command is shift—-H in READ. It will
switch from the permanent NAME file to the one you have
loaded, after you have installed the file parameters at ALNA.
I+ you use shift-H without installing the new parameters, the
effect will be to switch off the NAMEs entirely and you will
not be able to add new ones.

You can amaloamate NAME files only if they pertain to separate
biocks of memory., with the addresses in one block all higher
ithan Lhose in the other. Then just load the two files end to
end in the proper order and save them as & single file.

PSRN R e e - 28 Ep SR

HOT -2

AFE X
AFRG
ALINEY
ASIM
ECEX
RCRG
BRFT2
BFTZ2
CADR
CBFL
CHOO
COUN
DEE X
DERG
EDDE
EQFA
FCRO
FENS
FI1LC
HILEX
HLLRG
1XRG
I YRG
EAaDD
KEYR
KLIN
KFOS
KRED
LENI
LFFO
LOSI
NADD
NASW
NEND
NOST
NTOF
OSDF
OSDF
OVER
FOIN
FRIM
SR
UNDR
USRS

NOTE:

NAMES

TEDG
7FDC
TFEW
QAT
TFCE
7FDA
TFRBRC
7FRE
TFFE
7FFS
6HARY
7FERé&
7FCC
7FDE
TFF4
TFEA
7FFA
7F9E
TFE4
TECA
7FDé
TFD4
7FD2
7FFE
TE7E
7FF2
TEFE
7DEZ
TFE&
7F R
7FC4
TFFC
7FF8
TFFA
TFCé
7FF&
7FC2
TFCH
ZERHFSL
TFERMA
TFEB
7FDE
FFQ?C
7FE8

IN FERMANENT FILE

Store +or AF" register pair in single-stepper
Store for AF register pair in single-stepper

Alternate NAME file descriptors. 8ix bytes.

Single—-step simulation area. Five bvtes.

Store

for

BC" register pair in single-stepper

Store for BC register pair in single-stepper
Ereakpoint #1 address

EBreakpoint #2 address

Current address +or disassembly

Flag for a bit-op prefix (CR)

Selects and updates Read mode display
Counter for printing register values

Store

for

DE" reqgister pair in single-stepper

Slore for DE register pair in single-stepper
Flag for ED prefix

The END address

Flag for prefixed bit ops

Single-step window switch: holds CRUN if off

Fill

Store
Store
Store
Store

£ or
for
for
for

character., normally zero for screen clear

HL." register pair in single-stepper
HL register pailr in single-stepper
IX register pair in single-stepper
1Y register pair in single-stepper

Address pointed to by the cursor

Gets code of keystroke into A3 preserves other
LLine number with cursor

Screen address of the cursor

Futs cursor address into HL and KADD

Length of current instruction in disassembly
Stores address for floating-point interpreter
Last one-step instruction

Next address for disassembly

Switch for NAME lookup

End of NAME list

Next one—step instruction

Most recent leading (low) address of NAME file

One-step display file for extra window
One-step—display point for window, as DFCF
Overflow warning for User's stack

Fointer used in building register-value display

Space or prime for register display
Stack-peointer storage bin for stack switches
Underflow warning for User’s stack

Single~step user’s stack pointer. Sets with 8.

The hiagh byte of variables for the 64k version
is FE rather than 7F. Low byte is the same.
A1l other addresses are identical.

‘
rLe

THE KIG REM

There is a REM aenerating program that was published in

& back issue of SYNTAX, and those of you who have it may want
to install it and use that to create a BASIC line to hold your
machine code routines. However, you may find the following
approach more instructive on how to manipulate BASIC from the
machine level. We have taped Big REM and included it after
the 16K version of HOT Z on your master tape. Rig REM fills
all of the available workspace in a 16k memory.

Biaq REM can be used with either version of HOT Z-11, although
il can only be joined together on a single tape with the 16k
version. First LOAD HOT Z. You can LOAD Big REM without
exiting HOT Z by setting END to 4DC#, putting the cursor at
4639, wnd aivina the LOAD command. You can also exit HOT Z
with Lhe O command, LOAD Rig REM from BASIC, and return to HOT
Z with the appropriate RAND USK command. One thing you cannot
do (with 1&6E) after loading EBig REM is to add BASIC lines in
Lhe conventional way. because your memory is essentially full
and vou will start overwriting parts of the HOT Z files.

With Kig REM loaded., you can start writing your machine—-code
routines «f 4682, which contains the character zero (10) as a
mear Fer . as doess the last usable byte (4AA4). When you finish.
then vou will want to cut off the REM statement so that vyour
code just fits. The necessary information to do that is
contained in the chapter on BASIC line formats in your BASIC
manuel o 14 vou look at 487D and following with Eig REM
loaded, vou will see the line number in high-low order (@@@1H)
and then the line length in low—-high order in addresses

AH7F -8, Thal length is @BAZIH. If vou add that value to the
nesl wddress, 4081 (the address of the token for REM (ER))
then Lhe sum equals the location of the display file (#BAR25 +
481 = 454M6) .

you should use this relationship to "clip off" the BASIC REM
with vouwr routine in it. 1¥, for example, your last byte of
code ie al address 4406, then you will need a line ending
(7oH) at 44¢1, and & line number at 4402 and 44435, I+ you
want thal line number to be & 2, then put @@ at 4402 and @2 at
4450, {(For higher line numbers, remember that this is a hex
vialue. rnot decimal.) Now you need a line length at 44#4-5 and
« REM tLoken (E&) at 44¢é6. The line length will be the
difference between this address (44¢6) and the display file
addrese (4886 — 4406 = @$6AT) ., so put the low byte (A@) into
4404 and the iah byte (#6) into 4485. That will create a
second BASIC line: however, the first line is still specified
as beino the full lenath. so yvyou must o back and change the
lenallh ot the first line.

=R =

Mtk i s amglds b £ kich
e «\f. 7 % : e oy T &

1n thie case. the line lenath plus the address of the first
token (here REM) must sum to the address of the first byte of
ihe next line number. which is 44@2 in ouwr example. Since
402 - 4¢81 = @381. put B1 in 487F and @3 in 4080. You can
now switch into BASIC with the @ command and delete line 2 in
Lhe normal way. Lhen SAVE line 1 for later merging with your
BASIC pr ooy ain.

Using HOT 7 NAMEs with Rig REM reguires one of two approaches.
You could start by shortening the REM statement before you

wred Le vour code in order to leave room for the resident NAME
ligl 1o expand. Just clip off a suitable portion as described
above and come back to HOT Z with the USR call. A more
conveni ent. approach would probably be to locate the NAME file
Fen vour routine «l the high end of the big REM statement.
(See the notes on NAMEs and Naming.)

yau cern do thet by just writing the address 4482 into the

Lhir o addr ese slote al ALNA. then using the H command (Read)
Lo swilech Lo the empty NAME 4ile. Or yvou might want to
iranefer «ll or part of the permanent list into the REM before
vou oo Lhe switach. (Fer careful not to transfer over the end
wf Lhe REM stetement. which would destroy the line end and the
beairnming of the display file.)

I vou pul Lhe NAMEs f+or your routine in the top of the REM,
then afler vou split the REM vou will have your routine in
line 1 and the NAMEs in line 2. You should then SAVE both
lines as & working copy for future revisions, then delete the
second line and SAVE again for merging with a BASIC program.

Combining Eig REM and the 16K HOT Z

You cer combine the 16k version with Big REM so that they LOAD
as a single program. L.0AD the two programs as described
abbove. Write an 8%H at 7F1F to indicate the end of a
variables area. then go to the systems variables area and
Charue: ELINE, STEEROT., and STHEND so that each holds 7F2¢
(low-hiaoh order!). Then SAVE the whole thing from EBASIC.

Whon vou rel0AD, you will have to start HOT Z with a direct
RAND LISK ceall. you cannol write any EASIC or declare any
BOS10 var iables with this version, and you should decouple the
Llwo per Les afler starting HOT Z by restoring ELINE, STKROT, and
STHEND 1o hold 4DCH. What this linking does is to make HOT Z
leok lilke the variables area of a BASIC program.

1+ vou own Z-TOOLS o & comparable utility program, you can
meeraee Lhe 3 REM s created in this wav with BASIC programs that
Jack & lime 1.

If vou are not wusing Bia REM, or if you have completed the
None—chopping described above, and want to write a BASIC
progr am of some size with HOT Z still resident, then you
should move RAMTOF and the stack below HOT Z betore you use
shifl=-0 1o qo off and write BASIC. In 64K, put RAMTOF below
58@WH to protect HOT Zi in 16K, put it below 4E@d.

|
L7]
-

|

USTHEG THE RELOCATE COMMANDS (F-8,F-9)

The KRelocate command is rather complex in order to provide you
a dearee of flexibility in relocating vyow routines. A set of
nine addresses must be entered before using the F-8 command,
and a certain amount of planning and knowledoe of the subject
proaram ie required to derive the correct addresses. Simple
proarems with one or two calls or absolute jumps are best
label led, moved with the Transfer-with-NAMEs (F-6) command,

and Lhen fixed up by hand.

A program of reasonable complexity will have a block of code,
a block of data (which may include address listes or jump
tables)., and & block of variables., Good programming form
would recommend that vou keep these blocks separate and
distinct rether than, say, mingle data and variable storage
in the crannies between your subroutines. I+ you are

proar emming with HOT Z, you can separate the blocks generously
as v develop vour program and then use the Relocate commancd
to clese the oaps when you finish., Separation of code and
data @lso allows vou to make efficient use of the IX memory
architecture, since there is generally some block of memory
Lhat can be used for data or variables but not to run code.
(Atove 8OW@H 1n unmodified machines, above COiH with the
Oliger modification and the standard screen driver.) So don’t
clutter up vou active memory with data files i+ you have more
Lharn 1ok of RaM. :

HOT Z"s Relocate command will work on program blocks where
code, data and variables are separate and distinct. I+ you
have embedded patches of data, the command may still work, but
vou should check the data after the relocation to make sure
that it has not been chanced under the guise of readdressing
code. Froagrams such as the 8K ROM, where jump tables lie
around like empty beer cans, would have to be broken up into
seamenlts and relocated piecemeal.

The Relocate routine readdresses and moves 7280 code. However,
the command does not take account of overlapping segments
between souwrce and destination blocks. so you cannot directly
relocale o proagram to addresses already occupied by that

Pr oar e . (in such cases, you should use the transfer command
firel and then readdress in place with the relocate command.)

Jump tables have to be revised with the F-7 command, which
first asks vou for a displacement and then adds that
displacement to each address in the file, starting at the
curaor and ending at the END address. (I+ vou moved your code
+rom 4109H to 4490H then the displacement would be @3@@H: from
44¢0H to 4130H would be a displacement of FD@GH.) Jump tables
and data blocks shouwld be moved with the Transfer command
prior Lo using the relocate command.

,xﬁ

Vs

The F-8 command (Relocate) allows vou to move the code block
by one displecement, the datea block by another, and the
variables block by a third displacement. (Any other three-way
sopar alion should also worl,)

ADDRESS ENTRY FOR RELOCATING

The variables TEMI through TEMS are used to set the nine
address parameters for relocation. The nine addresses are
Lhree scts of three addresses. Each set of three addresses
indicates the start and end of an address range to be changed
ared the start address of the new address range. For example,
suppese vour program to be relocated it the following memory
e

44D6—-44E8 Variables
44F~-44FF Data
4500-4 68 Frooram

Suppose you have Z2E and want to put the variables and data

al. BlogH and the proaram at 4C44., First. transfer the
variables block to 81@dH:; it will run to 8118, so transfer the
dala bloclh to B119-8128. You want to move the program from
4506 up Lo 4049, so any addresses of jumps or calls that lie
belween 4506 and 4680 should be changed to lie between 4C440
and 4DCW. (vyou don’t need that last number.) S enter the
original ranoe in TEM]I and TEMZ2 and the first address of the
new block in TEM3, thus:

TEM1 4549
TEMZ2 4684
TEMZ 4C4a

These first three TEM values always hold the parameters
relating to the program (code) block. Variables and data
par ameters can go interchangeably into TEM4-TEMé or TEM7-TEM9.

Addresses of variables, which were at 44D@-44EB. must be
Changed to start at 8108, and addresses of data, formerly at
44F@-44FF, must be chanoed to beqgin at 8119, so fill in the
remaining TEM slots as follows:

Variables Data

TEM4 44D TEM7 44F ¢
TEMS 44E8 TEMB 44FF
TEM& 81 ¢ TEMS 8119

TEM4~6 are one block, TEM7-9 the other. Now set the cursor at
4569 (stlart of the code segment) and set END to 4686, then
aive the FUNCTION-8 command. The code will be copied to the
new Jocetion and readdressed to run with the new variables,
new date block. and anv relocated subroutines in the code
Block., The original code will remain unchanged at its
original location.

You may also use the Relocate command to split a code block
into two or more separate blocks, but you must apply it
repeatedly. once for each of the end-product blocks, and
readdress for Lhe blocks that are not being moved as if those
Blocks were variables or data.

14 vou lack variables or date blocks, then use & single
non=-rero dummy value for all three of the second or third set
of TEM values, i.e., make them all three the same.

The relocator leaves unchanged any ROM calls or any loads to
or from the systems variables area (4@0@0-4@7C).

RELOCATING HOT 7
In 16k

Relocatinag the prooram thal does the relocating is a special
case of wsing the Relocate command. Lack of space in 16k
prevents any useful relocation of the entire program. You
could, however, clear away some of high KAM by moving the
parte of HOT 7 that occupy those addresses into the work space
below 4E@H. Thises would allow you to write and debuo a routine
intended Lo run above RAMTOF with a BRASIC program.

To do that. begin by moving the stack with the FUNCTION-2
Commanc. Set the cursor to 4D8B% and give the command. (There
will be no visible on—-screen effert unless you have set the SF
display (shift-2 in READ)). Next move the HOT Z variables,
which occupy 7FBU-7FFF, by using the Transfer-with-NAMEs
command (FUNCTION=-6). Set the cursor to 7F8¢, set END to 7FFF
and give the command, followed by 4DB¢ as DEST. This copies
Lhe variables to 4D8¢—-4DFF, but it does not yet readdress the
HOT Z code to use variables at the new location. To do that.
st the following TEM values:

Code Data Variables

TEM1 S8od, TEM4 440, TEM7 7F 80
TEM2 7EFF, TEMS 44050 , TEMB VAR
TEMS S8, TEM6 444, TEMD 4D8w

The dala entries are dummy values intended to have no effect,
since Lhe data tables stay put. Finally, set the cursor to
S80¢, el END to 7F200 and give the FUNCTION-8 command. After
Lhat. vou may clear 7F20-7FFF with the FUNCTION-# command and
use 1l as workspace.

I+ vou are more ambhitious still and bhungry for high memory, it
is possible to move a part of HOT Z from the high addresses

Lo vour low workspeace. (If nmot. skip the next few

par agr aphis.) You need to pick a point in the code across
which there are no relative jumps: 787% is one such. Since
this is not & simple relocation but a splitting up of the

proar am. several etra steps are necessary. Assuming you have
alreadyv moved stack and variables, as described above, first
relocate the code from 787@-7F2¢ to 467¢. Next, we will
readdress code lefli behind (S80G-786F) to send its calls and
Jjumps to the transferred blocky finally, & small fix to the
iump tables 18 NeCcessary. :

For the initial relocetion, set the following TEM values:

TEMI 787, TEM4 448650 , TEMZ 44054
TEMZ TF29 ., TEMS 44054, TEM8 4 454
TEM3 L6760, TEMé 4406 , . TEM9 4405

Sel Lhe cursor to 787¢. END to 7F2#, and give the FUNCTION-8
command. The first column leaves the original code in place
and produces « relocated and readdressed version at the new
location (4&67@—-4D20) . The remaining columns hold dummy values
and produce no effect. The original section of the code will
slill make ite calls and jumps to 7878 and above. so0 it is
necessary Lo readdress that block too.

Anain., selt the TEM values:

e Lewd, TEM4 440541, TENZ 787%
TEM2 786F, TEMS 4445, TEM8 7F2%
TEMS e, TEM& 44034, JENS 4679

Set Lhe cursor to 580@, END to 786F and 1ive the FUNCTION-8
COMmmencl. The first column leaves the code in place and the
third changes any references to the high addresses to the new
code block. The jump tables still contain a pair of
references to Lhe moved code. however. Change the two 787 s at
SOEER and SOED to 467 s. (i+ vou moved & bigger chunk, you
would have to search through the Jjump tables and change each
reference to the moved block.) Now you can clear memory from
787% to 7FFF and use thalt as work space.

Since the above relocation hems in the NAME file, you must
el lher foreago using labels or relocate the NAME file into your
ew wor kepace, which is relatively simple.

Laraer Memories

I vou should expand vour RAM or install one of the
moditications that allow you to program parts of high RAM,.
Lhen the following relocations may be useful.

From 16K to 32 (unmodified computer): This case allows you
to move: files and variables to high RAM, but the program must
sli1l) be localed below 8OGEH in order to run. The files of
Lhe Jek version are located at S5@48-57FF: let’s move them to
BP48-REFF, leaving BF@O-RFFF 4or variables. which are
currently at 7F@@-7FFF. Set the following TEM values:

Code Data Variables

TEM1 58w, TEM4 o948, TEPM 7 TF @
TEMZ 7EFFy TEMS STFr., TEMB Z2FFF

TEM3S S89Y, TEMéE B748, TEMS BF @

It is important first to copy the files and variables up to
their new locations. so first transfer the data and variables
blocks to their respective new locations, leaving the old
copies Lemporarily intact. Transter the variables
(7FB¢-7FFF) first, using the Transftfer-with-NAMEs command
(FUNCTION=&). This will change the NAME file for the new

ver Si0on. Thern use the shift-T command to get to the start of
the NAME file (4E#C). Turn on the cursor, set END to S7FF,
and transfer to RBOGC. (That puts 5048 into B748. etc.)

Now sel the cursor to SBEW, set END to 7EFF. and give the
FUNCTION=-8 command. After the return from that command, you
mayv erase the original data and variables areas for vour own

Liser .

This relocalion requires no.readdressing of jump tables
betause the code is left in place., but there is one

amal]l block of sinagle-step code which is embedded in the data
and copied out whenever the single-stepper is used. This
block originates at S70F-572R and will have to be readdressed
by heand if the code block had beern moved. Details of this fix
ar e in Lhe mnext example.

There is just one chanoge to be made in the data section to
initimlize to the new NAME file location on loading or
restarting. The initial file location is set from the six
bytes at BEF4 and following. Change EEFS and REF7 from 4E to
BES and BEF? from 9% to E7.

Having done this readdressing., it is useful to make yourself a
loader . s0 that vou can load in the new version directly and
don™t have to relocate every time. The easiest way to make a
loader is to modify the existing one by loading the entire HOT
=11 tape into memory and modifying it. For the example
relocation. you can load the HOT Z-11 tape as a data tape from
SEHHIH Lo RBR4ED, The code ihat loads KHOT Z to the proper

addr esses will be at BZAB and will have to be modified.

Firsl, however, the readdressed prooram segment from SBE@ to
7EFF should be copied into the loader with the transter
coummeand. Set the cursor and END to these two addresses and
iranster 1o B8DC4. Next, set the cursor to REGC and END to
BEFF and Lransfer to BIDG. This moves the files into place.

Now modify the code at B3AB to read as follows:

LD HL.43De
LD DE.ES@C
LD EC.#9F4
LDIR

LD HL,74E3
LD DE.7F1F
LD EC,2726
LDDK

CALL @F23
JF 4@3E0

14 vou use the insert command (EDIT) before each of the first
four instructions, vow can preserve and use what 1s already

-y -y

there. bul chanage the LD BC to 2720.

Feady ol lasla SaVE from BEG% to H4ED and the resulting tape
should laad normally and initialize the relocated version.

One of ithe hazards of loading a large program such as this is
Lhe possibility of weitinag over the machine stack when you
Capy wr Lhe prooram. 1 this case, the stack 1 in the
evenlital workepeace (FFOG-7FFF) and is sate. However, if you
enene in non-standard addressing or have a revised ROM in

vour meChine, thern be suwre the stack is in a safe place before
loading HOT Z.

Moving HOT Z to Hiagh R&AM

I vou heve @ suiltable memory for the project (Oliger or
Moemotech or possibly another: not a Byte—-Back M—-64 or a Super
7.) and make the Olicer modification to your computer (See S0
vELNZ.) . you can run machine code in the I2-48BK block
(BEGSH-BFFF) ., or if you have a separate display board, you may
he able Lo use the entire 64K for proorams. In that case, you
should convert HOT Z to run entirely in another block of

MEMNOr v . Hore's how to move the 64k version to 9800H, keeping
Live veariabhles and files in the top 16K of a 64K memory.

(vou ought to test youwr modification +irst by using HOT Z to
Wwrile & simple Jlittle routine like CALL ®ARA, CALL 737E, RET
somewher e in Lhe newly opened-up memory area. This just
Clear & Lhe screen, waits for a keystroke., and comes back to
HOT 2. but you cean’t normally run it at, say, B1ddH. Set the
cur sc0 Lo Lhe Firel instruction and give the shitt-R command
g s T T 14 il doesn’t work, themn either yow mod 1s
incorrecl or vour memory has some prevent circuit in it.)

et Lhie édl ver sicn. Het the following TEM variables:

Code Data Variables
TEM S0, TEM4 Sy, TEMZ S
TEMZ TEIF TEMDS S . TEM8 B=1ajaly)
TEMS3 FBEI ., TEMé SO, TEMY SOBe

e o e

This will cause the proaram code to be rewritten at 98¢@ and
following addresses with all calls and jumps readjusted but
Willy 1he same variable and file addresses. (Values in TEM4
Lin ouahr TEM® are dummy values that prevent anything from
happerni hag. Use any one non=zero value for these, but keep
Lhiem ell Uhe ﬁah&u) :

Sel Lhe cursor Lo 5860 and END to 7FI1F and qive the FUNCTION-8
Commenich. 14 vou have done things correctly to here, you will

+ind the readdressed program beginning at 9800, Don"t try to

vy it ovel. Unlike the earlier example., the Jjump tables must

Bo readdr essed because the program itself has been moved.

The jump tables for the standard 64K version becin at Fé648 and
eons et F76D. Since both copies of the proaram are in memory.
vt can jusl readdress the Lables in place. Lse the
FUNCTION=7 COMMAND Lo change the jump tables. (Cursor at
Fadqs, ol END Lo F76D., hil FUNCTION, then 7. set DISF to 440,
becanse the moave f+rom SEOY to 9800 is « displacement by that
amounl, ENTER.) Now check the address at F784 and change it
ek Lo 497643 since that address is in the systems variables
ar ea. i1l does nol chanae.

Mt Lhis peoint., vou are running commands in one version and
control in the other. Now switch to the new version by
selting Lhe cursor to 98¢ and giving the shift-R (Run)

CoCmmrent 16w Theat should ring uwp the @66 address as the program
resterls in Lhe new version.

The single-stepper requires one more set of changes. There is
s smel]l patch of code embedded in the data section that is
copied oul for single stepping. You will find it at FDE#E to
ADZR (FDZC isn™ L) There are seven JF's and one CALL in that
ar e It ie generally quicker to revise those eight addresses
~than to use Lhe FUNCTION-8 command. though you could use it by
setting TEM1I = FD@E, 2 = FD2R, 7 = FDOE, 4 = Se@d, O = 7FI1F,

& o= 986, and the other three with a dummy, say S@@d. I+ you
revise Lhe addresses by hand, jusl add 400¢ to each. 5

Do € change tLhe JR. (The new addresses will all begin

with either A9 or Af.) You should now have a fully converted
version Lhal runs in the 2&-48H block of your modified
compuler " s memor y.

Fo make o loader, for Lhis new version., load in the original
Lapse $rcm 4489 Lo 794F. (You may first want to erase the old
version el SREo-7F20 with the FUNCTION-# command.) Now all
vou have to do is to copy the various blocks into the

appt opriale spots in Lhe loader, change a few loading

addr esses, and resave the same block to make a loadable tape.
(fcdr esses 44039-4470 will contain the svstem variables that
ot mally load Lo 490609-4@70.)

Sl d7Re . clifangesthetbPeDE #ZRIF toslLB IDESBEIE. That will load
Lhe prouaram to its new memory residence. At 443%F, change the
Call 737E Lo CAlLL BI7E. That calls the relocated keyboard
sca while Lhe cover is on screen. At 4442, change the LD
BC. 1468 Lo LD RC,IRB6H8. That clears awav the loader atter it
lias done its Job. Change the JF at 444F to JF I80d. That
slarls Uhe prooarean.

Now sel tLhe cursor at 98@@, END Lo BFIF. and Transfer
(shi41-T) to 47D@,. Next, cursor at F3A#, END set to FDFE, and
Tr ansfer Lo SEFE. I+ vou want to change the version number
and memoryv-occupation listing on the cover. look at 466F and
following wilh Lhe datea display and make the changes in the
Ecit mode. Finallyv, record over the initial address space
(44us-754F) . The resulting tape should load from EBASIC,
inelall HOT Z. and Jjump Lo the cover, just as your original

verr 1o does.,

-9 -

THE ONE-STEF WINDOW

The Sinale-Step display window requires.a second full display
file for the cumulative screen print of the routine you are
stepping through. 8Since such a display file takes up 768
bvtes of memory that vou might otherwise use for programming,
the program requires you to specify where you want to put the
second display file. Such a file can be anywhere in memory
since il is moved into the proper location at each step. Just
assure that the following 768 bytes contain nothing you want
to keep. Then set a cursor to the start of this area and qive
Lhe FUNCTION=-9 command to initialize the file and hook the
window into the single-step routine.

After you have initialized the second display file. you can
switeh the single-step display window in or out with the shift
W command (Single-B8tep). I the window is "on'"., the screen
will come up with a pause tor a keystroke at every step.

Since only & few steps will actully print to the screen, you
mey want to keep the window off and refer to it only
occasionally. Restart HOT Z (shift R in READ) to get rid of
ihe window entirely and reclaim the memory space.

The window will normallv flash on screen for each step. but
1here will be no pause unless you first give the W command.
Lhen hit ENTER to run a step. Any key will take you back to
the register display. but note that the V key is also a CLS
command for vour window display. A CLS puts the print
position back to the top left screen corner.

1f vou use RSBT 13 to print to the display window, you can run
{he whole KST 16 routine in the same way you would a CALL to a
subroutine, by hitting shift-R in single-step mode.

A iRy 4 - - 40 -

(

HOTES ON M&k ITNG EFROMS

A4t the moment. the onlv possibility of putting HOT Z-I1 on
ERROM 16 to use two 27647 s (or a Z7128) or the equivalent with
some kind of modified memory system. This means vou will have
sume erir e space F0or your own routines as well, and you may
wanlt Lo hook up some of them to HOT Z.

The commend lists have two kinds of user—-slots for extra
commands. marked as "Dead keys" and "User hookups'. IOy o
wor boentirely in RAM, then treat both categories as equal.
Justl repiace the cwrent address in that jump-table slot with
L address of the rouline yvouw want to run as a command for
Lhoe carresponding key.

I vou malbe vour own EFROMs of HOT Z. then vou have to treat
Desettd berve and User Hookups as qQquite separate opportunities.
Decerdd beve will be truly dead in EFROM unless vou enter an

addr ess before vou burn an EFROM. I+ you have space for your
favoritle routines on the same EFROM with part of HOT Z, then
vou sheould hook up those addresses before you burn the

EFROE . User hookups are still available atter vou burn the
EFROI because they allow vou to hook in routines you have Jjust
wWedtler b eddress elote in the variables area. Addrecsses
e lhiese s=luls e e listed on the command sheets. itois often
hendy Lo ook new routines of any sort into HOT Z and to run

Lhom as commands.

fMosl available slots have been left among the Write commands
becavse those commands allow the agreatest flexibility. I+ vou
Weanl, Lo add Lo thal flexibility, write vour own command
processcr and make the entry into that a HOT Z command. That
ig rounahly how HOT Z ties together the Read command mode with
the Wy ite modes and the single-—-step. I use a jump table for
a1l command-processing loops and advise anyone using HOT Z to
Leke the same approach because there is a lot there that you
Canl boryrow. {(For example, a CALL to this version’s KEYRoard
routine will preserve all register values except for the
aCcuml ator, which comes back with the code of the first key
pr essed. 1 does use the EXX registers.)

With e« biridle command. vou should have the cursor address
aved labile to vou as well as the END address. The END address
P4 alwave available by loading from the HOT Z variable EOFA,
whinoch s included in the permanent NAME list. The cursor
acldh wees should be read al the start of & routine with & CALL
FRED (cur sor ~addr ess read), which brings back the cursor
address in HL end updates it in the HOT 7 variable KADD

Leur sy addr ess) . FRED ie the address in the first CALL for
thie M o kev rouline. +or example, which is listed on your
Commericl sheeot . FRED puts the cursor address in HL and into
Lhe HOT Z veariable KADD.

I1¥ you have « routine that you want to make into a Write
command. then you should decide what mode of HOT Z you want to
return Lo. even if only eventually. A routine that ends in a

‘ RET must not destroy the existing screen, or it will have no
context to return Lo. (Il will come back, though, to an
anonyvmous address and in Write mode but with no cursor, at
which peint vou should press ENTER.) If you want to use the
screen then you should choose to return to Read mode, which is
the "home base" of HOT Z. To do that, you should FOF the
firet RETurn address and dispose of it, then load HL with the
address CHOO and do an EX (8F),HL. If you do that, you can
everr control the address to which the HOT Z display returns by
loading CADR before youw RETurn.

In olher words, if you want to use the screen, and to know the
address at which the command was issued, prefix your routines
withs: ;

FOF HL
LD HL. CHOO
EX (SF),HL

and end them with a RET.

Commands that do not wse Lhe screen can restore the cursor
position with a CALL KRES. You can move the cursor one line
dowr with CALL EDWN or move it up with CALL E-UF, either just
before the RET.

‘ Commands appended {o the single step may need to use the

address in the NEXT slot, which is stored in the variable NOSI
(next one-step instruction).

T A2 il SRR S R

THE FLOATING-FOINT INTERFRETER

RST 28H ie the entry into the ROM's floating-point operations,
which are coded in the bytes between an RST 28 and the
following 34H. There is a good explanation of this second
lanquage (Or is it third?) of the ZX in Dr Logan’s article in
SYNE 2 20 (Fut beware of the two sign tests, which aren’t
jumps, as labelled in S8YNC.)

HOT Z will read this floating-point language. but only after
vou turrn on the floatineg-point interpreter (shift-W in READ).
If you leave the floating=-point interpreter turned on, you
will get & true reading of the ROM, but problems can arise
elsewhere in memory when you encounter an EF that functions as
data v ather tham an RBT 28. You may get locked into the
floatina-noint interpreter mode, without a 234H. the END
character, in siaht. The way out from this barraoe of
aibberish is the shift-W command again, which switches out the
floaling=-point interpreter entirely. Other times you may want
to read it, because this extra language is really one of the
treate of the Sinclair—calculator heritaaoe.

The +-p interpreter is also turned off by entry of & numerical
address, but not by a page flip or a NAME. so use the last two
whien you're working with f-p. In addition, there is a special
key command, T0O in READ mode. which switches the flag that
tells the disassembler which language it's in.

The TO command (READ) has a dual purpose. It will get you out
of floating—-point mode (without turning off the interpreter)
if vou need to and cant, or it will get you in when you want
to be but aren”t. You may get stuck in that mode through
addressing vourself inlo the middle of a ZB# instruction, for
erxample. Since floating-point operations include jumps and
loops., there are also inclusions of f-p code that do not begin
with an R8T 28, branches of jumps. The TO command will get
you into Lhose branches. However, the command is just a bit
swilch and it doesn’t function when the screen page itself
switches from one language at the top to the other at the
bottom. The cure, when the TO command doesn’t function is the
cule trick of hitting the shift-D key twice. This picks up
the language mode from the bottom of the page to the top and
reverses Lhe reading of any bvyles from one language to the

ol her .

You will alse encounter some queer behavior if there is f-p
cude «l the bottom of the screen and you try to write or go to
the One-Step. This is not generally fatal and can be cured by
auing back to disassembly and setting the screen so that it
endes in 180 disassembly. I¥f you want to write f-p code, the
only manageable way is to go into EDIT mode (shift-E).

- 43 =

Another consequence of jumps in the f-p language is that an
RST 28 may be embedded in a run of f-p language as a second
entry point. In these cases, EF gets misread as GET F, which
is a particle of nonsense, but it really is an RST 28, and
would read as such if you called it by address to the top of
the screen.

Floating=-point operations are FORTH-like stack manipulations
and easy to follow if you know something about that language.
They use the MEM area of the systems variables as storage
slots For six fleoating—-point numbers. (Each is five bytes.)
The f-p operations thal transfer between the calculator stack
and MEM are called GET and STOR and are followed by a single
digit from & to © to indicate the slot used. Numbers or
letters higher than S generally indicate a patch of nonsense
with BGET, STOR and STAK as well.

Many of the possible f-p operators do not occur in the coding
of the ROM, where you are likely to encounter them with HOT Z.
They occur instead during the ROM's reading of BASIC programs,
and they are generally identical with a BASIC instruction.

You could learn to write floating-point code with these and
the purely machine—code f-p operators if you wanted toj; it
would be similar to BASIC and a little faster. The ‘entry
point® of these EBASIC f-p operators into the real machine
world is Lhrough the operation labelled RAFF (Run A as
Floating=-Foint). However, you need only use the command
numbers listed &s the first column of the instruction list to
perform those BASIC functions on whatever floating-point
numbers are on the calculator stack. From the perspective of
a HOT 7 user, RAFF would be used only to run an operation that
resul ted from some calculation, whose result was a code in A.

Two of the f-p operations deliver data directly from the code
listing Lo the calculator stack. They generally do this in an
efficient way, using fewer than five bytes, if possible, to
encode Lhe five-byte floating-point number. HOT Z prints the
encoded floating-point number in the NAME and mnemonics
columns of the disassembly listing. Since the interpreter
doesn't know where any number will end, it is necessary to
begin «11 of them slightly out .of column, or the longest would
poke oul the line-ends in the display file. The f-p
interpreter also reads the full five hex bytes that go onto
ithe f~p stack, rather than the condensed version that actually
occur s in Lhe ROM, The ADDR column keeps accurate track, and
vou can work out the extra bytes, which are generally trailing
ceroes, from thal column.

HOT Z prints floating-point data by using the same ROM
Foutines that hancdle thal data, so the disassembly slows down
and becomes jerky when it has to print those huge numbers, or
their single-digit versions.

The two data-stacking operations are labelled STFF (stack
floaling point) and SAFF (successive approximator: we’ve all
met one). The first of these puts one five-byte number on the
calcul ator sltack. the second a series of-one to T1 (whatever
ies lefi when you AND the low nibble of the instruction byte
wilh @F) five-byte f-p constants. (That"s © to 158 bytes.)

When eitlher of these operations gets stuck near the bottom of
e screen without enough space to display all its floating
points, then thal same operation will begin again after the
nexlt page flip (F command) and boringly redisplay its whole
repertorv of numbers. The successive approximator in the ROM
uses anything from six to & dozen floating point constants to
get to « value for Chebyshev polynomials to approximate the
Lr anscendental BASIC functions.

t

i

stack eniry Wi
an

i

o
ot

tion
i

B4SIC functicn

to
BASIC function

BASIC fun:

> functicn

1T function

-
-
-

Description

BASIC functicn
ERSIC function

spizce

i
BA

String epuality test

B&3IC functio

BASIC 4o

g
3

o
pu
H

4

)
F

Addr
ib
iD6E
iD
iDD4
iC4as
DD

i
i
1

-

T

\

FLOATING POINT OFERATIONS
Code Co
@iz JR
cos
iE TAN
ACS
ATN
LN

=

DN

o
a4
[

T fun

BASI

Wy
Rl
H

£y
pRETeT

SGN

iTh

inger te

¥ too, res

an

ith guctient

ES
.
e
"
=8

ction

funciion

z

+un
i Tmlle

I
H

-

BASI

wing

-
vaius

28 rou

&
-

pi for t

[

godul

READ Mode Command File

File
(64FK) (16K)
F&6SE SOSE
F&4C S@4C
Feby Swé6
F&S8 S
Fes62 S@62
F6SC Se5C
Fé&48 S048
Féb4 5S064
F&4E SO4E
F&S5A SutA
F652 S052
F&54 Sot4
Fo&hs Sebhé
Fo4A S04A

. F6Sg SoSe
Féebe Subé6
F&eB 5068
FbbA S0b6MA
FebeC SwelC

Key

(Shift)

DD
zZ
]

<EA4H44UNITIIOTMO

Routine

7EIG
63DE
bA74
6UCE
63C4

SDES
SDhé8
S8u¢
65E4
SCFS
SEC1
63E7
SCEC
6IF @

S5D71
6488

8ingle~-Step Command File

File
(64F)

F&DA
F&6C8
F&DC
FéD4

F&DE
Fé&DB8
F&C4

F&CA
Fé&D6

F6CE
Fé&De
FeD2
F&Cé
FeCC

(16K)

SEDA
Sace
S@DC
SeD4

SUDE
SED8
SUC4

SUCA
SUD6

SECE
SEDE
SEP2
SUCe
SaCC

kKey

(Shift)

AND

Routine

64325

A7Dw@

AF46
63FD

6581
64AF
64273
6469
645D
6SCY
6EIF @

Function

Turn on assembly editor
Stack pointer display switch
Switch to data display

Switch to edit
Fix display file
Dead key

Switch NAME file
Guit to BASIC

Restart HOT Z (also RAND USR 22528)
Switch to Single-Stepper
Display top of NAME list
Decimal address to follow
Switch floating-point display

Switch off floating-point interpreter

Frint screen
Dead key.

User hookup (Routine
User hookup (Routine

Function

Dead key

Display breakpoints
User hookup (Routine
Dead key

Back up one byte

Run one step

User hookup (Routine
Go to breakpoint
Dead key

Quit single-step for
Run CALL or RST

Set register value
Skip step

Twin breakpoints

Set breakpoint 2

Set breakpoint 1
Window switch

FPrint screen

addr
addr

addr

addr

at 7FAU/FEAH)
at 7FAZ/FEAZ2)

at 7FAA/FEARA)

at 7FAC/FEAC)

disassembly

WRITE Command File

File
(64FK) (16FK)
Fé6B4 S¢B4
Fe72 Sa172
F6Bs S0B6
F&7E S@7E
Fé&8B8 So88
F6B2 5082
F66E SO6E
F&BA SuBA
F&74 S@74
Fé&Bw So80
F&78 S278
F&7A4 S@7A
F&7C 5Sa7C
Fe7¢f Sa7@
F&76 S8176
Fe8C SesC
F6BE S@BE
F&9@ Se9
F6&92 Su9R
F&94 5S@94
Fé69& S096
Fé698 S098
F&9A SO9A
F69C Sa9C
F6FE SH9E
FeA SOAw
F6AZ SOAZ
FéehRd SoR4
Féhd SUAb
F6hAB SoAB
FeoB S@s8
AL SeAC
FCRE SURE
FORE SORY
FeR2 Sen2
FeR4 S@n4
F6R6 SOR6
FORE SORE
FoEA SURA
FeRC SERC
FORE S@RE
Fele S@Ce
F&EZ2 Sec2

DR e 1 I K o R e o T e R e S A e
IrZou~=IT0TMTMOoOoOnd>0BNTO

=z

5 e

'
§

g, i K e s iyt e) iy B T O S e e T+ e T U

Routine Function

Addr

SFSA
SA61
SE27
SF63
SC64
SE4E
SF7D
SERI1E
SD&7
&SER
S847
SDDé6
676
SAGZ
Shu4

SEC4
SERI
SCCA

584D
S937
S98¢9
6E3AF

61AZ
AZFS
F6&D

Assembly mode

LOAD from cursor to END

Display switch to DATA

Edit mode

FIND string marked by cursor and END
Christen with NAME

Delete instruction at cursor

Hex sum and difference of cursor and END
RUN code at cursor (RET to READ)
Single step instruction at cursor
Transfer

Delete NAME

Set END variable

SAVE from cursor to END

Frint from cursor to END+

Set INSERT cursor
fuit to READ mode

Clear memory 4rom cursor to END

Fill memory with specified character
Move RAMTOF to cursor, stack just below
Dead key

Transter code and NAMEs to DEST
Readdress a jump table by displacement
KRelocate code from cursor to END
Initialize window for single-stepper
Dead key

Find next occurrence of string
Dead key

User hookup (Routine addr at 7FA4/FEAR4)
! TFAL/FEAL)
4 7FAB/FEAB)

Hot b T COW\MUJ\O\S;

Ofﬂq Ra«lsinﬂv,‘up

Read wode Commands ore latd b e
vty below. Single - sty conmands ore wstd o Ge Same laqwt
s

Ofww
below te coTHEP

Wrte mode wwwnm\dsmuaﬂohﬂew
sepak Wt For

vaz‘:,i' Fenclion ’217 comvvends
A

—

Mt ot luted. Refer s
VR TN Y e 7 Pis|
| Z 3 b 5 6 7 3 > P
Back BPTg 8rt 8PT 1 R ead
EENTY TPOFE wago] [CECXN [FR3C] and
Q w 3 R Y v I o P x
QQviT wikpow Rvw Twilv PR QU %"@‘3% mo«(Q,
5@ FEY FIXDE ‘ . Fowcir WW N
| A i I 5 l 0 F (:-] H J [y = EWT ;
SET)
BREAR
SHury 2 X ¢ v 8 % H SPACE
RINTS
AWORT O 0% EVp - + i 3 SPas ey
1 (5 5 b o (9 7 3 9 o
, (RN wnte
- [save E@ RV] u ST !
l Q w = R ¥ Y v T ° g mode

2 . 2 Fuwe
G H J 3y i EMIER

| Sws [;—] * \ C

Okt
B v = . S Rae

FUVCTO0V KeEY <cOMM AMos:

- Read wmode -~

F-3 Lx-File fmw

driv e udi ne

F-& AX-BiLE “""f)’
Wiyt mode -

-0 Clean

F~1 kY

e set anhp

) 'Tm-rer with names
7 R € addiess

F-S RM

-9 lvtiadis @ window
£-F Vexe fond

Br vaer heRep (76A4)
F=Q vs e heo hep (M#4¢)
F-R Vaer ‘Wfbur (7FA 8)

ADPITIONVAL \WWPoRMATIOW :

Version L-L1-1
memcry vse $ucoo ~$TEFFH (13363 -321€7) -
Rard R L2523 (5300H) restants. tow 2 (g suier +q

Ranmdp = >L64o ($71F30)

2X-FPILE p endent v evson

Set Ramip © 199e3 + load as date

HeT Z-TI @5 12800 byts beng (1225 8] (b 3200)

LIPILE - fra prom ASEFE - V633 (SSWH. - 3FeE)
22636 (OAB6 M) byls e

KEM - Gosz - kLAadlh (Useabl)

Vame pil (start) SSHIFT +T (read) Evp = venvo(lohy) + n
ALNA = Start (bo,hi) %2 and WEMD s, Bhen SHIFT+H (1ead)

V. OL. FOR 2.X~FILE Tleek (Fucy)

